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Abstract

In this paper, I analyze communication through the disclosure of verifiable evidence

when the receiver/decision maker is uncertain about where the sender’s preferred action

lies in relation to her own. In contrast to the known-preference case, fully informative

communication is impossible: receivers cannot distinguish between senders of opposite

preferences who pool by withholding their information when it is unfavorable. Two

opposing patterns of partial disclosure emerge. When senders are biased relative to

receivers, but just as state-sensitive, nondisclosure is driven by senders with extreme

preferences, who choose to withhold slightly unfavorable evidence; but the reverse

occurs when senders are state-insensitive.

1 Introduction

Why do people have differing beliefs about issues that appear, to an informed audience, to

be all but settled with hard evidence? One explanation is that people with access to evidence

don’t always disclose it, but instead choose to lie by omission to influence others.

Folk wisdom, however, states that hiding information doesn’t work if audiences anticipate

what’s being hidden. Grossman [1981] and Milgrom [1981] provide a classic argument that

if the evidence-holder always wants to influence the receiver’s action up, then only senders

with the lowest signals will consider hiding them, and because of adverse selection, senders

can’t benefit from silence.

To bridge a gap between this result and the many examples of influential nondisclosure

in the world, this paper explores the possibility that receivers don’t know how the sender
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wants to influence them: they are uncertain about the sender’s preferences. There are a few

reasons why this might be the case. First, a receiver may know the identity of the sender, but

be uncertain about her preferences on a given issue, either because the issue or the sender

herself is unfamiliar. Alternatively, a receiver may not know the sender’s identity at all, only

that she comes from a population of possible informants with different preferences.

My main observation is that, when the receiver doesn’t know which direction the sender

would like him to adjust his action towards, he will never be able to fully back out what

the sender is hiding. This is because of bidirectional pooling : senders with opposite kinds

of preferences and evidence on opposite sides of the status quo both end up withholding

their information, each relying on the possibility of the other to prevent the receiver from

catching on to the nature of the omission. The best the receiver can do in response is take

an intermediate action that does well in expectation. In contrast, when the sender’s desired

direction of influence is known, full disclosure occurs.

Under bidirectional pooling equilibria, the sender discloses some signals, but not others.

Their disclosure policies order signal values, and under some additional conditions, the set

of sender-preference types, into two-sided spectra with increasingly influential signals and

increasingly biased preference types surrounding a center signal and center type. Disclosure

near the center differs from disclosure at the extremes. Strikingly, two opposite patterns

of disclosure arise depending on how much more sensitive the receiver is to the state than

the sender. When the receiver and the sender care about the state equally, a sender finds

it worthwhile to share highly impactful information, but nudges receivers in the direction

of her private bias by omitting details that slightly contradict it. On the other hand, when

only the receiver cares about the state, the sender is reluctant to share big news, because

she doesn’t want the receiver to overadjust; instead, she tries to influence receivers to take

her preferred action by disclosing minor evidence in its favor.

The comparative statics of disclosure from these two cases straddle debates about the

importance of heterogeneous perspectives to informative communication. In the first case,

greater differences in preferences discourage communication, while in the second, a diversity

of perspectives is necessary for unconventional truths to get across.

These results give a framework by which the power to disseminate or withhold facts allows

idiosyncratic preferences to affect public outcomes. It is applicable to several important real-

world examples. One is media ownership: although the magnitude of the effect is disputed,

studies agree that content put forth by media outlets changes with ownership in ways that are
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consistent with pushing the owner’s agenda (Gentzkow and Shapiro [2010], Baum and Zhukov

[2018]). My results predict this, and suggest that, if in addition to promoting their bias,

media companies also care about benefiting their readership or about citizens doing the right

thing, then they will all report the most essential headlines, but differently biased companies

may differ in their coverage by selectively skipping unfavorably partisan minutiae. On the

other hand, lobbyists pursuing a specific issue in Washington may completely fail to disclose

even important information about the issue to Congressmen, so long as it’s not aligned

with their goal – this is consistent with predictions when the informant is fundamentally

state-agnostic.

This paper is laid out as follows. Section 2 gives the main framework of a disclosure model

with sender preference uncertainty. Section 3 shows that with enough preference variation,

bidirectional pooling equilibria occur. Section 4 discusses the form of the disclosure policy

and comparative statics under two main cases. Section 5 works out an example, Section

6 considers the assumptions distinguishing my results from full disclosure, and Section 7

concludes.

1.1 Literature review

Models of disclosure typically involve senders who choose to disclose verifiable signals to re-

ceivers, who then act upon the information. Classically, in applications such as the quality-

signalling problem, imperfect information between the parties lies along a single dimension,

that is, the sender’s private signal about some shared, payoff-relevant state. Because the

sender always wants to influence the receiver’s action up, there is adverse selection into

withholding. Any pooling strategies unravel, leading to full disclosure in equilibrium (Mil-

grom [1981], Grossman [1981]). A general statement of these results, from Okuno-Fujiwara

et al. [1990], is that whenever each sender’s utility is always strictly increasing (i.e. positive

monotone) in each receiver’s beliefs about their signal, all state-relevant private information

will be revealed.

Strands of the literature have pointed out the possibility of imperfect disclosure when

receivers are uncertain about more than the sender’s payoff-relevant signal. Dye [1985]

observed that, if observers are uncertain about a manager’s endowment of information, then

those with unfavorable evidence can profitably pool with the uninformed. For the sake

of comparison, we could frame the focus of this paper as uncertainty about what kind of

sender holds useful information, under certainty that the information exists. Banerjee and
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Somanathan [2001] consider voice in organizations, starting with a model of binary disclosure

in which informants may have different priors about the promise of a project. However, in

their model, all communication is unidirectional, since the verifiable signal itself is always

good news. My paper departs from their binary state/single signal framework and focuses on

settings with a continuum of signals and states, and bidirectional communication; however,

it shares their focus on the effects of sender heterogeneity.

Also related to the idea of pooling under multidimensional sender heterogeneity are models

of costly signaling with privately-known costs (Frankel and Kartik [2019], Esteban and Ray

[2006]). There, an informed party with known preferences observes a natural state, as well

as her private cost of distorting the decision-maker’s perception of the state. Similarly to

the sender-specific preferences in this paper, distortion costs are not directly payoff-relevant

to the decision-maker, but they confound reports of the state, so that uncertainty about the

state remains at the time that decisions are made.

Some more distantly related discussions of cheap talk and partial provability are never-

theless interesting in the context of this problem. Chakraborty and Harbaugh [2010] show

that, when there are N dimensions in a message, at most one dimension is payoff-relevant to

a sender with fixed preferences, therefore he and the receiver can find an N − 1 dimensional

subspace of common interest on which they can communicate informatively in a cheap talk

game. This paper considers something of an opposite case, in which the feasible message

is restricted to a single dimension, while the sender’s payoff depends on multidimensional

information, and shows that this restricts the informativeness of communication. Among

models of partial provability, Seidmann and Winter [1997] show that while generically equi-

libria are partially informative, full revelation occurs when each verifiable subset of types –

analogous to a message in my setting – admits a worst-case type, which no other type in

that subset wishes to masquerade as. In my setting, sufficient richness of sender preferences

and compactness of the signal set precludes the existence of a worst-case type for the empty

message.

2 Model

I focus on a simple disclosure model with one sender and one receiver, who both aim to

maximize their expected utility under utility functions

us(θ, xs, ar), ur(θ, ar).
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Payoffs for both players can be directly influenced only through the receiver’s action, ar ∈ R.

The state of the world, θ ∈ R, is unknown, but both players know that its distribution

is f(θ). Conditional on the state, a signal ms is drawn at the start of the game from the

distribution h(ms|θ).

Assumption 2.1 The marginal distribution of the signal,
∫
θ
h(ms|θ)·f(θ)dθ, is continuously

supported on a bounded interval [m, m̄].

Finally, the sender has a privately-known preference type xs ∼ gs(x) ∈ [xs, x̄s], with

commonly known distribution independent of f(θ).1 For the main body of this paper I

assume that gs(x) is not a degenerate (point) distribution, but I reconsider this possibility,

and its relation to full disclosure results, in the last section.

Assumption 2.2 The receiver is uncertain about the sender’s type: gs(x) is not supported

on a single point.

Though inconsequential in this one-shot model, the underlying idea is that xs is intrinsic

and known well ahead of time, while ms is a signal drawn at the beginning of the game. To

reflect this, I will refer to xs as simply the sender’s type, and when referring to a particular

sender, I mean a sender endowed with a type xs. To avoid confusion, the sender’s full set of

private information (xs,ms) (which is what “type” refers to elsewhere in the literature) will

instead be called a scenario henceforth in this paper.

2.1 Timing and actions.

First, the sender’s type is drawn, and she learns it. Then, nature draws a state and a signal

conditional on it. The sender observes the signal and chooses whether to disclose the signal

to the receiver, or to withhold it. I interpret the signal as a piece of hard evidence that

can be passed on costlessly to the receiver, and means the same thing to both players. The

sender’s preference type, on the other hand, is not verifiable, and the sender cannot engage

in cheap talk or in any other way influence the receiver’s belief about it. Neither the sender

nor the receiver has commitment power. Observing only what the sender has passed along,

the receiver chooses an action. To summarize, the timing is as follows:

0. xs, θ, and ms are realized. The sender is given xs, and observes ms.

1Everything will extend to the case where xs has unbounded support, as well, but I have chosen to keep
xs bounded here for ease of exposition.
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1. The sender sends a message m̃(xs,ms) to the receiver. She may choose between sending

their signal as-is (m̃ = ms), or withholding it (m̃ = ∅).

2. The receiver observes the message if there was one. He forms a Bayesian posterior

on the state, which is β(θ|∅) if he saw no message (m̃ = ∅), and h̃(θ|ms) if he saw a

message m̃ = ms.

3. The receiver chooses his action ar(m̃), and payoffs are realized.

2.2 Notation and assumptions.

Let a∗r,i(·) denote an optimal choice of ar from the perspective of player i. That is,

a∗r,r(θ) ∈ arg maxE[ur(θ, a)] a∗r,s(θ, xs) ∈ arg maxE[us(θ, xs, a)].

I often write a posterior β as an argument in utility function u or maximizer a∗, in place

of θ. It is shorthand for taking the expectation over θ given β, e.g.

ur(β, ar) = E[ur(θ, ar)|β] a∗r,r(β) ∈ arg max
a

E[ur(θ, a)|β].

This notation is natural because the state of the world enters the game only through the

expectations induced by the signal. Thus, the signal is a “sufficient statistic” with respect

to the state and players’ strategies, and it is abstractly without loss to take utility functions

over realized signals, instead of those over states, as primitives of the model.

In order to impose necessary structure on the basic setup above, I assume that preferences

are continuous, differentiable in the action, single-peaked, and ordered in m and xs.

Assumption 2.3 Continuity and differentiability:

us(θ, xs, ar) and ur(θ, ar) are continuous in all arguments, and differentiable in ar.

Assumption 2.4 Quasiconcavity with increasing peaks (QCIP):

us(ms, xs, ar) and ur(ms, ar) are strictly quasiconcave in ar, with peaks a∗r,s(β, xs) strictly

increasing in xs, and a∗r,r(h̃(θ|ms)) strictly increasing over the family ms ∈ [m, m̄].

QCIP means that the utility functions of sender and receiver are both single-peaked, and

are ordered with increasing peaks over the possible beliefs induced by signals (for the receiver)
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and preference types (for the sender), holding the other fixed. Single-peakedness is a common

assumption, and increasing peaks is a standard way to order single-peaked functions. The

order applies only to the peaks, and preferences are not necessarily well-ordered elsewhere. In

particular, this condition does not necessarily imply single crossing differences (SCD), which

says that for arbitrary actions a′ > a, a “higher type” (with higher signal or preference type)

will have relatively higher utility for a′ rather than a whenever a lower type does. In fact,

Quah and Strulovici [2009] observe that among single-peaked functions, increasing peaks is

strictly weaker than SCD, and equivalent to the interval dominance order.

Following the notational discussion above, I assume QCIP directly on the signal-dependent

expected utility functions. It can be replaced with an equivalent assumption over the original

state-dependent utility functions us(θ, xs, ar) and ur(θ, ar) as long as:

1. h̃(θ|ms) satisfies the monotone likelihood ratio property, which is sufficient to guarantee

a strong set order on the optima.

2. Strict single-peakedness of us, ur is preserved when expectations are taken over h̃(θ|ms),

for all ms.

The second condition can often be checked by hand. It is satisfied for a fairly inclusive range

of common functional forms. Some useful categories of utility functions and signal structures

satisfying (2) are:

• The signal perfectly conveys the state, ms = θ.

• Conditional distribution h̃(θ|ms) is strictly single-peaked for all ms, and θ is a shifter

of the utility functions, i.e. for some increasing functions γs, γr,

us(θ, xs, a+ ∆) = us(θ − γs(∆), xs, a), ur(θ, a+ ∆) = ur(θ − γr(∆), a).

The solution concept I consider is a perfect Bayesian equilibrium (PBE) in pure strategies

for the receiver. I will show later that such equilibria always exist here.

PBE is the concept used in most signalling games, including by Grossman and Milgrom

for the unraveling result, and in the partial provability literature. In my model, any PBE

is pinned down by a single object, which is the receiver’s empty-message belief β(θ|∅). The

sender best-responds to a given empty-message posterior by choosing between inducing the

action the receiver takes upon seeing the true signal, or the one induced by β(θ|∅). Being in
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a PBE requires that the empty-message posterior be consistent with the state distribution

conditional on an empty message, induced by the sender’s best response.

Imposing that the receiver play a pure strategy is usually without loss, since under a

generic utility function and belief distribution, there will be a single action that maximizes

their expected utility. Furthermore, QCIP ensures a single optimal action for the receiver

when the signal is revealed to him. However, since my other assumptions will not rule out

that there can be a tie for the receiver’s expected utility maximizer under the no-message

posterior, and my approach relies on the receiver choosing one specific action, in that case, I

will force a pure action. This assumption is quite realistic in the direct application to single

receivers, since most people don’t consciously randomize. It may be less reasonable when

the “receiver” stands for the aggregate of a large population, but even then, since at least

one pure strategy equilibrium exists, and additional equilibria relying on randomization will

be knife’s-edge and difficult to sustain, it seems natural to focus on the former.

3 Bidirectional pooling

Does the sender always disclose her evidence? In this section, I argue that if the set of possible

preferences contain ones that oppose each other under any beliefs for the receiver, then full

disclosure never occurs. Formally, the key idea of uncertainty over opposing preferences

is a combination of Assumption 2.1, which establishes type-uncertainty, and Assumption

3.1 below, which ensures that senders’ preferences are sufficiently opposed to rule out full

unraveling of nondisclosure.

Assumption 3.1 Bidirectional sender bias (BSB):

min
ms

[
a∗r,s(β(θ|ms), xs)

]
< a∗r,r(m) and a∗r,r(m̄) < max

ms

[
a∗r,s(β(ms), x̄s)

]
.

In words, BSB means that the most extreme actions that could be optimal for the sender,

over all type and signal realizations, are more extreme than the most extreme optimal actions

for the receiver. It captures a strong notion of opposing biases between senders in different

scenarios: the receiver is sure that no matter the action he plans to take, there are some

scenarios in which the sender wishes it higher, and others in which the sender wishes it lower.

Theorem 3.2 Assume that us and ur are continuous in all arguments, differentiable in ar,

and QCIP and BSB are satisfied. Then any signaling equilibrium features a∗r,r(β(θ|∅)) ∈
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(a) a∗r,s(m̂, xs) < a∗r,r(m̂) < a∗r,s(m̂, x̄s)
(Pooling)

(b) a∗r,r(m̂) < a∗r,s(m̂, xs) < a∗r,s(m̂, x̄s)
(Pooling)

Figure 1: Outcomes under disclosure and nondisclosure for different configurations of m̂.
Gray area = {(a∗r,s(xs,ms),ms) : xs ∈ [xs, x̄s],ms ∈ [m, m̄]}.
Red area = {(a∗r,s(xs,ms),ms) : a∗r,r(m̂) ∈ (a∗r,s(xs,ms), a

∗
r,r(ms)) or (a∗r,r(ms), a

∗
r,s(xs,ms))}.

(a) In equilibrium, m̂ ∈ (m, m̄), and the sender’s best response entails pooling towards m̂
from either side. In particular, senders in the red regions will always withhold the signal.
(b) Unlike in Grossman and Milgrom, there cannot be a corner posterior given the empty
message. If m̂ = m, then the sender would best respond by withholding some higher signals,
violating belief consistency.

(
a∗r,r(h̃(θ|m)), a∗r,r(h̃(θ|m̄))

)
, with a positive probability of withholding both “high” signals

(a∗r,r(β(θ|∅)) < a∗r,r(h̃(θ|ms))) and “low” signals (a∗r,r(β(θ|∅)) > a∗r,r(h̃(θ|ms))). All sender

types, except possibly one, withhold under some signal realizations.

The only type of sender who may never find it worthwhile to withhold any signal is one

who prefers the receiver to take action a∗r,r(β̃(θ|∅)) exactly when their true signal would

induce r to take that action anyways.

For a full proof of the theorem, please see the appendix. Here, I will explain the intuition,

which is simple. First, fixing the sender’s strategy, the receiver’s beliefs are also fixed, and his

strategy is determined: he plays a∗r,r(β(θ|m̃)). There is a signal, m̂ ∈ [m, m̄], such that the

action taken by the receiver upon seeing the signal m̂ is the same as the action taken under

m̃ = ∅: a∗r,r(β(θ|∅)) = a∗r,r(h̃(θ|m̂)). This signal functions as an endogenously determined

“center”, the benchmark to which impactful news will be contrasted. It is the status quo not

because it represents receivers’ prior beliefs, but because it represents the posterior under

silence, which can be quite different.
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Recall from our discussion of the model that m̂ fixes the equilibrium. To see that any

equilibrium will satisfy Theorem 3.2, observe that under single-peakedness, if a∗r,s(ms, xs) >

a∗r,r(m̂) > a∗r,r(ms) or a∗r,s(ms, xs) < a∗r,r(m̂) < a∗r,r(ms), then the sender’s strict optimal

action is to withhold the signal. It will be helpful to refer to Figure 1, where such scenarios

appear in red. They are given by the intersection between the 2nd & 4th quadrants of the

plane centered on (m̂, a∗r,r(m̂)) and the gray area representing the set of possible (signal,

sender-optimal action) pairs. Importantly, the assumptions above don’t suffice to pin down

the entire set of scenarios under which nondisclosure is the sender’s best move, but the region

just described will constitute a strict subset of such scenarios.

It is not hard to see that under BSB, the red region must have positive measure over

gs(x)
∫
θ
h(ms|θ)f(θ)dθ, and, more importantly, there is a spread over the true value of ms

across the region. Technical assumption 2.1 prevents the receiver from taking on beliefs that

have probability 0 ex ante and that almost every sender wants to avoid.2 Thus, senders

withhold signals with positive probability, and whenever they do, the receiver is uncertain

about the true signal realization.

Single-peakedness also implies that whenever the receiver’s belief is consistent and not a

singleton, there are both types of senders who prefer to withhold signals above m̂ and ones

who withhold signals below. Observing that senders’ optimal-action curves are functions

bounded within the gray region of Figure 1, it’s clear that the only type of sender who may

never wish to withhold any signal is the one whose optimal action curve passes through

(m̂, a∗r,r(m̂)).

Finally, note that while m̂ characterizes the equilibrium strategies of sender and receiver

uniquely up to indifference, the equilibrium need not be unique, as there may be multiple

equilibrium values of m̂ that give rise to distinct strategy profiles. An equilibrium in pure

strategies for the receiver does always exist, however: a simple intermediate value theorem

argument, in conjunction with BSB, shows that a function that takes in m̂ and outputs the

implied posterior m̂ from the sender’s BR has a fixed point in (m, m̄).3

2If the domain of ms were unbounded, and the receiver’s belief b(ms|∅) allowed to be supported on its
closure, then under families of preferences in which the receiver’s optimal action varies unboundedly with
the message and the sender’s utility becomes unboundedly negative with distance from their optimal action,
a point belief on ms =∞ or ms = −∞ would be self-sustaining, due to infinite losses from withholding any
finite realization of ms. Thus, fully informative equilibria are once again possible. Similar issues arise when
ms lies in an open interval.

3Let m̂BR(·) be an operator taking in a hypothetical value of m̂ and outputting the new value of m̂
that would represent the receiver’s no-message posterior after one round of best responding by the sender.
Because the sender’s best response is continuous in m̂, and the receiver’s posterior is continuous in the sender’s
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4 Who withholds information, and when?

The discussion above makes it clear that most types of senders disclose some signals, and

withhold others. I now examine which signals each sender withholds, and how that affects

the kinds of information that make it through to the receiver. The end result of these

comparisons is a set of comparative statics over senders’ propensity to communicate and

signals’ likelihoods of being transmitted, depending on their extremeness relative to special

“central” signals and types.

4.1 Sender-type monotonicity of disclosure

Are senders more likely to hide impactful information the more it contradicts their bias?

Intuition suggests so. By withholding their signal, the sender “corrects” a misalignment

between their preferences and the receiver’s by letting the receiver carry on with a belief that

is slanted relative to the truth, from the sender’s point of view. Senders with increasingly

extreme low types should be willing to withhold an increasingly large set of signals higher

than m̂, and senders with increasingly high types should more often withhold signals lower

than m̂. For the rest of the paper, I will assume single crossing differences, under which this

prediction is easy to verify:

Assumption 4.1 Single crossing differences (SCD) in xs: For all ms, xs < x′s, and

ar < a′r,

us(h̃(θ|ms), xs, a
′
r)− us(h̃(θ|ms), xs, ar) ≥ (>) 0

=⇒ us(h̃(θ|ms), x
′
s, a
′
r)− us(h̃(θ|ms), x

′
s, ar) ≥ (>) 0.

(1)

Single crossing differences in xs means that if, between a lower action and a higher one, the

utility of a sender of lower type is higher for the lower action than for the higher action, then

the same is true of the higher type.

Proposition 4.2 If, in addition to the assumptions of Theorem 3.2, us satisfies SCD, then

the propensity to withhold signals in order to induce a given slant is monotone in sender type:

for all ms such that a∗r,r(h̃(θ|ms)) > (<)a∗r,r(β(θ|∅)), whenever a sender of type xs chooses to

withhold ms, so do all senders of type x′s < (>)xs.

strategy, m̂BR is continuous in m̂. By the argument used to prove Theorem 3.2, under BSB m̂BR(m)−m > 0
and m̂BR(m̄)− m̄ < 0; therefore, m̂BR has at least one fixed point in [m, m̄].
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Figure 2: SCD guarantees that if a type xs is at least indifferent between m̂ and ms > m̂,
then a type x′s < xs will certainly prefer m̂, and thus withholds ms for sure.

Proof Defining m̂ as in the proof of the previous theorem, observe that for all ms < m̂,

SCD in xs directly implies that if a type xs prefers m̂ to ms, then a type x′s > xs does as

well, and similarly for ms > m̂ and x′s < xs.

Proposition 4.2 states that under single crossing differences, the order on senders’ types

perfectly captures the (weak) inclusion order on both the set of signals ms < m̂ that they

benefit from withholding, and the set of signals ms > m̂ that they benefit from disclosing.

Without single crossing differences, there exist counterexamples to this proposition. The

reason is that, even if under a given signal ms type x′s has a preferred action closer to

a∗r,r(h̃(θ|m̂)) and further from a∗r,r(h̃(θ|ms)) than type xs, a change in the shape of the rest

of the curve may mean that type x′s gets greater utility than type xs from disclosing ms, and

less from withholding.

4.2 Disclosure policies by type

I now look at disclosure choices within types. Given m̂, a full characterization of the disclo-

sure policy for each type is possible.

A few more definitions will be helpful. In particular, since there is a 1-to-1 mapping

between disclosed signals and receiver-optimal actions, it will be useful to view the sender’s
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Figure 3: The value of obfuscating evidence in a given scenario (xs,ms), when m̂ lies in one
of 3 regions.
A: Withholding influences beliefs in the wrong direction ⇒ disclosure.
B: Profitable nondisclosure.
C: Withholding overcorrects in the direction of bias ⇒ disclosure.

problem as hypothetically maximizing their utility over all possible messages, subject to the

disclosure constraint that only m̂ and ms are actually feasible. Taking as given the receiver’s

strategy, in the first period the sender chooses a message as if maximizing directly over m̃

the utility function

vs(ms, xs, m̃) := us(ms, xs, a
∗
r,r(β(θ|m̃))).

The function vs will take on the properties of us; in particular, it is single-peaked in m̃.

Furthermore, if the sender’s choice of message was unrestricted, there would be a unique

sender-optimal message

m̃∗s(xs,ms) := arg max
m̃

vs(ms, xs, m̃).

Finally, each sender has a “breakeven message” as a function of true signal ms.
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Definition A breakeven message m=
s (ms, xs) for the sender is the furthest-away alternative

signal that, if sent, would allow the sender to receive at least the same utility as disclosing

their true signal:

m=
s (ms, xs) =


min(m ∈ [m, m̄] : vs(ms, xs,m) ≥ vs(ms, xs,ms)) if ms > m̃∗s(xs,ms)

max(m ∈ [m, m̄] : vs(ms, xs,m) ≥ vs(ms, xs,ms)) if ms < m̃∗s(xs,ms)

ms if ms = m̃∗s(xs,ms)

Single-peakedness of vs(ms, xs, ·) implies that an alternative hypothetical message is pre-

ferred to ms if and only if it lies between ms and m=
s (ms, xs). Figure 3 shows why: when m̂

lies towards m̃∗s(xs,ms) relative to ms, nondisclosure directionally favors the sender’s bias,

but if it is to the other side of m̃=
s (xs,ms), then the omission goes too far.

Therefore, fixing m̂, the sender’s strategy, up to indifference at the boundaries, is

m̃(ms, xs) =


∅ if ms ≤ m=

s (ms, xs) and m̂ ∈ [ms,m
=
s (ms, xs)]

or ms ≥ m=
s (ms, xs) and m̂ ∈ [m=

s (ms, xs),ms]

ms otherwise.

(2)

Figures 4a and 4b give examples of this concept. Fixing a sender, the intersection of

m̃ = m̂ with the purple region between the true and breakeven messages gives the set of

signals the sender will withhold.

4.3 Monotone breakeven message

Only when the breakeven message is well-behaved will there be crisp predictions about what

kinds of signals senders disclose. The multi-segmented policy of Figure 4b occurs because

the breakeven message in that case is nonmonotone, which can occur when the shape of

the sender’s utility function or the amount of misalignment with the receiver is highly state-

dependent. On the other hand, when the breakeven message is monotone, strategies involving

a single interval of nondisclosure will be the only possible outcome.

Proposition 4.3 (Montone breakeven message (MBM)) In addition to previous as-

sumptions, if for all xs, m̃
=
s (ms, xs) is strictly increasing in ms, then

• There is x̂ such that the sender of type x̂ is indifferent between disclosing or withholding
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(a) Monotonicity of the breakeven message
implies an interval withholding strategy.

(b) An optimal strategy for the sender when
the breakeven message is not monotone in
ms.

Figure 4: Breakeven messages plotted against true signals.

m̂ and discloses everything else.

• As xs increases from x̂, senders withhold an increasing interval of signals [m∗, m̂], and

as xs decreases from x̂, senders withhold an increasing interval of signals [m̂,m∗].

On the other hand, if for all xs, m̃
=
s (ms, xs) is strictly decreasing in ms, then

• There is x̂ such that the sender of type x̂ is indifferent between disclosing or withholding

m̂ and withholds everything else.

• As xs increases from x̂, senders disclose an increasing interval of signals [m∗, m̂], and

as xs decreases from x̂, senders disclose an increasing interval of signals [m̂,m∗].

Figure 4a illustrates the concept. Intuitively, positive MBM means that the threshold for

overshooting the sender’s bias is increasing in the realized signal, while negative MBM implies

that it is decreasing. Loosely speaking, the sender’s and receiver’s interests are relatively

aligned under positive MBM, whereas under negative MBM they can be quite misaligned.

Neither implies, nor is implied by single crossing differences or QCIP.

Both the positive and negative monotone cases fit some simple cases. Positive monotone

breakeven messages tend to occur when senders are misaligned due to simple bias. Formally,

I define a simple bias setting to be one in which the sender’s utility function is simply shifted
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relative to the receiver’s by a bias function ω increasing in xs:

us(θ, xs, ar) = ur(θ, ar − ω(xs)).

The breakeven message will always be positive monotone when preference misalignment takes

the form of simple bias and:

1. us is symmetric about a∗r,s(ms, xs), or

2. ms shifts us and ur together: there is a single increasing function γ such that

us(ms, xs, a+ ∆) = us(ms − γ(∆), xs, a), ur(ms, a+ ∆) = ur(ms − γ(∆), a).

Bias, symmetry, and signals as shifters are all common in models of policy targeting and

principal-agent models of delegation with communication.

On the other hand, an important class of problems for which the breakeven message is

negative monotone is that in which the sender’s preferences are completely state-independent.

That is, senders could be completely dogmatic, or the state could be payoff-relevant only

to receivers, even though the sender cares about the realized outcome. Examples include

lobbyists and interest groups, or strict ideologues.

Section 6 gives an example of positive MBM in a situation with pure bias, symmetry, and

a state-matching motive, as well as an example with negative MBM when the sender is very

insensitive to the state, relative to the receiver.

4.4 Comparative statics under MBM

Having established settings in which positive and negative MBM are reasonable assumptions,

I turn to highlight some comparative statics of the probability of disclosure when breakeven

messages are monotone. Observe that signals and types are very much bidirectional, with

the “center” of each bidirectional spectrum naturally defined by m̂ and x̂, respectively. A

rough symmetry of scenarios across the center means that the most interesting comparative

statics will be about extremeness, or distance from the center, rather than about high vs.

low signals or types. In what follows, for the sake of conciseness I assume that indifferent

senders always choose disclosure.4

4This does not change the set of equilibria, nor their properties
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The first set of comparative statics concern the communicativeness of senders. There is

exactly one central type x̂, who can be considered a pure centrist. Under positive MBM,

this type’s interests are aligned enough with the receiver’s to want to disclose everything

(even though their preferences and the receiver’s generally differ). With a negative MBM,

the centrist’s interests are not particularly aligned with the receiver’s, nor do they have a

particular interest in championing a cause; thus, they never disclose anything. As a corollary

of Prop. 4.2, the total probability of disclosure is monotone with distance from xs to either

side:

Corollary 4.4 Under positive MBM, the sender’s total probability of disclosing a signal is

quasiconcave in xs and maximized at x̂.

Under negative MBM, the sender’s total probability of disclosing a signal is quasiconvex

in xs and minimized at x̂.

So, in cases where senders’ and receivers’ misalignment approximates a simple bias, extreme

senders are, on the whole, less likely to disclose a message. Fixing receivers’ beliefs, a

greater spread in the distribution of sender types decreases the amount of communication.

On the other hand, when senders’ preferences are less state-sensitive than the audience’s, only

extreme types are willing to share influential information, and more dispersed preferences

lead to a greater flow of information.

The contrast between these two cases relates to a debate about the positive or negative

impacts of diverse values. A common thought is that polarization can jam communication.

Many issues for the receiver, such as decreased trust or lack of common ground, contribute,

but the positive MBM outcome supports reluctance to communicate on the extreme sender’s

side as another possible factor. The pattern under negative MBM, on the other hand, echoes

an argument in favor of pluralism made by Banerjee and Somanathan [2001].5 There, a

greater variety in types is associated with more communication, because it takes an agree-

ably biased sender to support the transmission of any major news – strong supporters are

necessary to bring things to light.

It matters not just that different senders can be more or less forthcoming, but also that

some signals may be disclosed more often than others. Abstracting away from the realiza-

5Banerjee and Somanathan’s verifiable communication model actually satisfies conditions for a positive
monotone breakeven message, but their signals are unidirectional by design, and for them, an extreme sender
is one who has a private desire to support a project, which corresponds in my model to a higher, not a more
misaligned, type.
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tion of senders’ types, differential transmissibility of signals directly determines welfare and

outcomes on the receiver side. A corollary of Proposition 4.3 is that:

Corollary 4.5 Under positive MBM, a signal’s total probability of being disclosed is quasi-

convex in ms except at m̂, where it is 1. As ms ↑ m̂ or ms ↓ m̂, the probability of disclosure

decreases.

Under negative MBM, a signal’s total probability of being disclosed is quasiconcave in ms

and maximized at m̂.

More extreme signals are more transmissible under positive MBM because senders disclose

all bias-favoring signals. An interpretation of this is that bigger news is more likely to travel

because everyone agrees on the importance of publicizing it, whereas biased sources are all

too happy to sway audiences by fudging the small stuff. The contrasting prediction under

negative MBM is that extreme signals are less likely to be transmitted through disclosure.

They are too influential, and must be withheld for fear of causing the receiver to overreact.

I emphasize transmissibility through disclosure because I believe it has consequences for

more extended models that feature disclosure as a subgame: for example, when a chain

of different senders is required to deliver evidence to its final recipient, its effect may be

amplified, and all information that isn’t sufficiently impactful, or any information that’s too

outrageous, may be dropped in transmission. Again, both possibilities are plausible.

The preceding discussion of conditions for positive and negative monotone breakeven

messages suggests that one distinguishing factor is the sender’s state-sensitivity relative to

the receiver. With a specific setting in mind, this distinction can help settle the debate both

about the transmissibility of extreme signals and about extreme senders’ communicativeness.

5 Example: policy platforms.

Following the discussion of equilibrium policies, I provide an illustrative example. Suppose

that a receiver follows a member of the press (sender) on Twitter, and would, in an upcoming

election, like to support one of a continuum of government spending policies, which range

from very contractionary (-1) to very expansionary (1). There is a factor, θ ∼ U [−1, 1],

that influences the optimal level of government spending, but it is unknown to both agents.

The sender is affected by what the receiver does through its impact on the outcome of the

election. In addition, each agent may be in a position to benefit privately from government
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programs, or to suffer from higher taxes, so I model their utilities as a quadratic loss function

us(θ, xs, ar) = −(ar − θ − xs)2, ur(θ, ar) = −(ar − cθ)2.

with the sender’s private preference parameter xs uniform on [−1, 1]. Finally, suppose that

the sender has access to briefing with information relevant to θ that can be summarized as

a signal ms ∼ U [θ − ε, θ + ε], and may disclose it verifiably.

The utility functions in this example satisfy continuity, differentiability, and BSB; the

distributions satisfy Assumptions 2.1 and 2.2, and both jointly satisfy QCIP and SCD. Thus,

there will be bidirectional pooling and an ordering of disclosure in sender types. When c < 2,

the breakeven message satisfies positive MBM, and when c > 2, it satisfies negative MBM.

I solve for the full disclosure policy to illustrate the outstanding characteristics of each

case, starting with a description of the best response of the receiver and sender when the

other side’s strategy is fixed.

Receiver’s decision: a∗r,r(m̃) = cµ(θ|m̃), where the mean posterior message is either, if

m̃ = ms,

µ(θ|ms) =


ms, ms ∈ [−1 + ε, 1− ε]
1+ms−ε

2
, ms ∈ [1− ε, 1 + ε]

−1+ms+ε
2

, ms ∈ [−1− ε,−1 + ε]

or, if the message is empty, µ(θ|∅) =
∫ x̄
x

∫ m̄
m

1m̃(xs,ms)=∅µ(θ|ms)dmsdxs.

Sender’s decision: Fix the mean posterior upon seeing nothing, µ(θ|∅). Then

m̃(xs,ms) =


∅ if xs > 0 and µ(θ|∅)− µ(θ|ms) ∈ [0, 2xs

c
]

or xs < 0 and µ(θ|∅)− µ(θ|ms) ∈ [2xs
c
, 0]

ms else.

The belief µ(θ|∅) is determined in equilibrium, and fully characterizes the equilibrium

actions through the above best responses.

Claim 5.1 For all c, the unique equilibrium consistent with a Bayesian receiver is given by

the above actions and µ(θ|∅) = 0.

Figure 5 shows when the sender chooses to disclose or withhold signals when c = 1. This is
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Figure 5: c = 1

Figure 6: c = 2 Figure 7: c = 3
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a “pure bias” setting in which senders and receivers are equally sensitive to the state, but the

sender’s preferences are offset from the receiver’s based on private preferences. Withholding

occurs in the shaded area.

In contrast, when c > 1 the sender is more moderate relative to the receiver, introducing

a new dimension of misalignment between the players that varies with the magnitude of the

signal ms. The case c = 2 is liminal, and disclosure policies are particularly simple here:

senders disclose everything aligned with their bias, and hide everything opposed.

When the sender is much less sensitive to the state than the receiver, i.e. c > 2, we

approach the case where, relative to the receiver, the sender is almost state-agnostic: extreme

signals are rarely revealed, and only the most extreme senders are willing to disclose them.

We can contrast this outcome with those possible when the receiver is certain about how

the sender wishes to influence him:

Claim 5.2 If, in this example, the sign of the sender’s preference type xs is known, then in

the unique equilibrium when 0 < c < 2, the sender’s messages are fully separated according

to the realized signal.

Knowledge of sender type alone does not guarantee full disclosure, and in particular, Claim

5.2 is not true if c > 2: as Claim 6.2 in the following section will show, positive MBM is a

sufficient condition to guarantee full disclosure under sender-type certainty, but it turns out

negative MBM is not.6

6 Full separation with unidirectionality or certainty

The main way in which my model departs from the literature is by assuming that senders’

preferences are both uncertain and bidirectional. Plenty of models assume the opposite, and

obtain full disclosure. A well-known result allowing some variation in sender preferences

by type is the monotonicity theorem of Okuno-Fujiwara et al. [1990], which states that

full disclosure is the unique possible outcome whenever senders’ utilities are monotone in

the receiver’s beliefs over the entire space of scenarios. Though intuitive, this theorem is

not a particularly good fit to settings in which senders’ preferences have a single peak in

the interior of the action space. More applicable is the idea from Seidmann and Winter

6Nor is negative MBM sufficent to get complete nondisclosure. Partial disclosure strategies are possible
under negative monotonicity.

21



[1997] that full disclosure is a possible outcome if and only if each possible message admits a

different “worst-case” scenario, which senders in no other scenario would like to pretend to

be. Their logic applied here shows that if BSB fails dramatically, in that the sender-optimal

action is either always greater or always less than the receiver-optimal action in any scenario,

then full disclosure is the unique possible outcome.

Claim 6.1 If for all ms, xs, a
∗
r,r(h̃(ms)) < (a∗r,s(h̃(ms), xs)), then m̂ = m, and in the unique

equilibrium the sender reveals fully reveals his signal by choosing m̃ = ms under all signal

realizations. A similar argument holds when a∗r,r(h̃(ms)) > maxxs(a
∗
r,s(h̃(ms), xs)).

What happens if, instead, BSB is satisfied, but the receiver knows exactly what the

sender’s preferences are as a function of the signal? Because misalignment between the

sender’s and receiver’s preferences may be state-dependent, this is not as straightforward as

ensuring the direction of bias is known, and the literature does not seem to have touched

on it. Nevertheless, under positive MBM, I can show that in stark contrast to the outcome

under type uncertainty, if the receiver has full knowledge that the sender is of preference

type xs, all equilibria are fully revealing, and there exists at least one.

Claim 6.2 If xs is known to the receiver, and the breakeven message is positive monotone,

then an equilibrium exists, and in any equilibrium ms is fully revealed.

7 Conclusion

Can a sender with unknown objectives and access to hard evidence influence others through

their choice to disclose or withhold evidence? The answer depends on how the audience

updates their beliefs under nondisclosure. This paper shows that when a sender could

potentially have either of two opposing biases, receivers can’t fully back out the sender’s

evidence or their identity. Therefore, relative to a symmetric information benchmark, own-

ership of evidence benefits the sender by allowing her to withhold some unfavorable news.

In cases where senders and receivers are similarly sensitive to the state, but senders have

a state-independent bias, strong signals tend to be revealed, whereas weak ones are often

hidden, especially by heavily biased sources. Alternatively, when senders are agnostic to the

state, they avoid disclosing strong signals unless also strongly biased.

A couple of extensions of this model are straightforward. I have considered preference

uncertainty, and Dye [1985] considers imperfect disclosure under uncertainty about infor-

mation endowments. If there is uncertainty about both, then imperfect disclosure will still
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occur, and nondisclosing senders will pool with both informed senders under opposite sce-

narios, and the uninformed. The set of equilibria will differ from that without uncertainty

in informedness, but the form of equilibrium and comparative statics will follow what I have

outlined in this paper: the intuition is that information endowment uncertainty changes the

posterior under silence, but it doesn’t change informed senders’ best responses conditional

on the center.

Another potential addition is receiver-preference uncertainty. Among other things, al-

lowing receivers’ preferences to vary is natural in an anonymous setting where neither the

sender nor the receiver’s identity is known. Passing articles over the internet is a nice ex-

ample of this. When receivers’ preferences aggregate into a utility function satisfying the

single-receiver conditions, my conclusions carry over immediately. In some work omitted

here, I show that when receiver types are well-ordered and each type’s expected utility de-

pends on the state only through its expectation, pooling is also guaranteed under similar

conditions.

Directions for future work include evaluating the impact of certain assumptions. I have

assumed no cheap talk about the sender’s preferences, but in practice communication about

preferences may sometimes be possible, and may alter disclosure. In addition, signals may

be divisible, allowing the sender some freedom in the degree of disclosure beyond a binary

choice. I’ve also assumed that senders’ preference types are payoff-irrelevant to the receiver,

but they could instead be thought of as a payoff-relevant signal that cannot be disclosed in

a game of multidimensional communication. Finally, although many instances of disclosure,

such as those in a courtroom, or regarding the viability of a short-term opportunity, are well

approximated by a one-shot game, some relationships between informants and audiences

are long-lived. In these repeated games, persistent uncertainty about preferences may be

less sustainable, but it would be interesting to explore the possibility that senders may still

exercise some power by building a reputation.
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8 Appendix

Proof of Theorem 3.2 First, since us(θ, xs, ar) and ur(θ, ar) are continuous in all argu-

ments, as is h̃(θ|ms), the expected utilities us(h̃(θ|ms), xs, ar) and ur(h̃(θ|ms), ar) are also

continuous in all arguments. Since they are single-peaked, the peaks a∗r,s(h̃(θ|ms), xs) and

a∗r,r(h̃(θ|ms)) are continuous in ms and xs as well.

Lemma 8.1 Suppose that b(ms|∅) is supported on a subset of [c, d]. Then a∗r,r(β(θ|c)) ≤
a∗r,r(β(θ|∅)) ≤ a∗r,r(β(θ|d)), with strict inequality if b(ms|∅) is not a point mass.

Proof Consider the derivative of the receiver’s expected utility with respect to their action

under message ∅ given that their belief is b(ms|∅). At a∗r,r(β(θ|∅)) = a∗r,r(h̃(θ|m̂)), the
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derivative should be 0. But, for any c′ < c or d′ > d,

∂

∂ar
ur(β(θ|∅), ar)

∣∣
a∗r,r(h̃(θ|c′)) =

∫
ms

∂

∂ar
ur(h̃(θ|ms), ar)|a∗r,r(h̃(θ|c′))b(ms|∅)dms > 0,

∂

∂ar
ur(β(θ|∅), ar)

∣∣
a∗r,r(h̃(θ|d′)) =

∫
ms

∂

∂ar
ur(h̃(θ|ms), ar)|a∗r,r(h̃(θ|d′))b(ms|∅)dms < 0,

and this is true even for c′ = c and d′ = d if β(θ|∅) is not a point distribution.

Fix a putative posterior, β(θ|∅), for the receiver given the empty message. Observe that

there is an posterior on ms given ∅, which can be denoted b(ms|∅), with support on a subset

of [m, m̄], and

β(θ|∅) =

∫
ms

h̃(θ|ms)b(ms|∅)dms.

Then a∗r,r(β(θ|∅)) ∈ [a∗r,r(h̃(θ|m)), a∗r,r(h̃(θ|m̄))] by Lemma 8.1. The crucial step in the

proof is to observe that, by intermediate value theorem, there exists m̂ ∈ [m, m̄] such that

a∗r,r(β(θ|∅)) = a∗r,r(h̃(θ|m̂)).

The following steps show that in equilibrium m̂ must induce senders to pool via nondis-

closure.

1. Fixing m̂, define the sets

Ā(m̂) := {(xs,ms) : a∗r,s(h̃(θ|ms), xs) > a∗r,r(h̃(θ|m̂))},

A(m̂) := {(xs,ms) : a∗r,s(h̃(θ|ms), xs) < a∗r,r(h̃(θ|m̂)).

2. Then define

B̄(m̂) := Ā(m̂))
⋂
{(xs,ms) : ms < m̂},

B(m̂) := A(m̂))
⋂
{(xs,ms) : ms > m̂}.

Both are the intersection of open sets, thus also open.

3. If (xs,ms) ∈ B̄(m̂)
⋃
B(m̂), then by single-peakedness the sender prefers a∗r,r(h̃(θ|m̂))

to a∗r,r(h̃(θ|ms)), and would like to withhold ms instead of disclosing it.

4. Whenever B̄(m̂)
⋃
B̄(m) is nonempty, {ms : (xs,ms) ∈ B̄(m̂)

⋃
B(m̂)} must therefore

be in the support of b(ms|∅), and b(ms|∅) has positive measure over it.
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5. Because g(xs) is not a point distribution, there always exists either xs such that

a∗r,s(h̃(θ|m̂), xs) > a∗r,r(h̃(θ|m̂)) or xs such that a∗r,s(h̃(θ|m̂), xs) < a∗r,r(h̃(θ|m̂)).

If m̂ ∈ (m, m̄), then the former implies that B̄(m̂) is nonempty, and the latter implies

B(m̂) is nonempty.

6. Alternatively, if m̂ = m̄ or m̂ = m, then BSB implies that B̄(m̂) or B(m̂) are nonempty,

respectively.

This suffices to show that all equilibria must feature pooling: there is a positive measure of

signals which senders, depending on their type, have a positive probability of withholding.

As an addendum to point 6, observe that if the receiver’s belief is represented by m̂ = m̄,

then the sender’s BR induces her to withhold some signals ms < m̂, but no signals ms > m̂

(since such signals do not exist), which is inconsistent with the original belief. A similar

observation holds if m̂ = m. Thus, in equilibrium it must be that m̂ ∈ (m, m̄). By Lemma

8.1, since b(ms|∅) is not a singleton, it places positive probability on elements to either side

of m̂.

Finally, given m̂, there is at most one sender type that satisfies a∗r,s(h̃(θ|m̂), xs) = a∗r,r(h̃(θ|m̂)).

Any type xs with a∗r,s(h̃(θ|m̂), xs) > a∗r,r(h̃(θ|m̂)) will withhold for some set of signals ms < m̂,

and any xs with a∗r,s(h̃(θ|m̂), xs) < a∗r,r(h̃(θ|m̂)) will withhold for some ms > m̂.

Proof of Claim 6.1 Consider the case in which a∗r,r(h̃(ms)) < a∗r,s(h̃(ms), xs) for all ms.

Whenever m̂ < ms, the sender prefers to send ms, because a∗r,r(h̃(m̂)) < a∗r,r(h̃(ms)) <

a∗r,s(h̃(ms), xs). However, whenever m̂ 6= m, for every type xs there exists a positive measure

of ms < m̂ such that a∗r,r(h̃(ms)) < a∗r,r(h̃(m̂)) < a∗r,s(h̃(ms), xs). Therefore, if m̂ 6= m, all

withholding occurs for ms < m̂, which gives a contradiction.

When m̂ = m, once again if ms > m̂, no sender wishes to withhold. Thus, senders may

only withhold if ms = m̂, which is consistent with m̂ representing the receiver’s posterior,

and results in full separation of signals.

Proof of Claim 6.2 This claim follows directly from the fact that, under MBM, whenever

the sender withholds, he withholds an interval of signals to one side or the other of m̂.

The sender cannot pool with other sender types, so if the sender attempts to withhold a

nonempty interval of signals, the receiver should, as part of their best response, nontrivially

update m̂. Thus, m̂ represents a fixed point of the two players’ strategies only if the sender
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never withholds, which may be the case either when m̂ ∈ {m, m̄} or when m=
s (m̂, xs) = m̂.7

Proof of Prop. 4.3 Since utilities are single-peaked, the sender weakly prefers to withhold

whenever m̂ is inside [m=
s (ms, xs),ms] or [ms,m

=
s (ms, xs)].

Fix xs. The breakeven message m=
s (ms, xs) is strictly increasing in ms, so there is a single

signal M at which m=
s (xs,M) = m̂. For all ms < M , m=

s (ms, xs) < m̂; for all ms > M ,

m=
s (ms, xs) > m̂. Thus, either M < m̂, and m̂ ∈ [ms,m

=(xs,ms)] iff ms ∈ [M, m̂]; or,

M > m̂, and then m̂ ∈ [m=(xs,ms),ms] iff ms ∈ [m̂,M ].

7Visually, this is to say that m̂ must be either on one of the boundaries or at one of the nodes at which
ms and m=

s (ms, xs) intersect in Figure 4a.
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