Maintaining a reputation through costly signaling

Ying Gao

December 2, 2021

< □ > < 同 > < 回 > < 回 > < 回 >

Overview

In a bilateral relationship with monitoring, a willingness to send costly signals to maintain the relationship reflects a high value of future cooperation, which in turn reflects positively on the sender.

- Types that "behave well" expect to maintain cooperation for longer, leading to higher future value.
- This project: signaling a high continuation value in order to improve one's reputation.

Key ingredients:

- Possibility that cooperating becomes permanently more costly
- Imperfect monitoring of action/action set (strategically equivalent)
- Ability to generate a costly signal with no benefit

Overview

Some motivating examples:

- Client/agency relationship, e.g. a consulting firm maintaining ties with a company it provides services to.
- Buyer/seller with advertising as a signal

Main takeaway is that signaling can allow highly cooperative types to separate from low-cooperation types in an efficiency-improving way.

- Set of outcomes depends on how costly the signaling channel is.
 - Dependence may be finicky
- Without signals, cooperation may break down while it is still profitable. Signals make better equilibria possible.

< □ > < □ > < □ > < □ > < □ > < □ >

Setup

2 players, P1 (long-lived) and P2 (short-lived).

- Each period's P2 may "hire" P1 to potentially take an action a_t ∈ {0,1} at cost w to P2 and benefit g to P1.
- P1 has type θ ∈ {H, L} "high-cooperation" and "low-cooperation" types with different costs of acting:
 - $c_H \leq 0$, so type H is a commitment type who always acts.
 - On the other hand, $c_L > 0$.

• Outcome
$$y_t = \begin{cases} b & \text{w. Prob. } pa_t \\ 0 & \text{otherwise.} \end{cases}$$

• Equivalently, with probability p, P1 can do a favor ($a_t = 1$, with cost c_{θ}/p), which always results in $y_t = b$.

イロト イポト イヨト イヨト

Type evolution

Every period, there is probability q that a type-H P1 transitions to type L.

Underlying assumption: there is a pool of P1s, small proportion of type H.

• Type H = access to high-quality inputs, high intrinsic motivation Conditions for type H are impermanent – can worsen due to a negative shock. Opposite could also occur, but shocks are asymmetric:

- Probability of transitioning to type *H* as an *L*-type is much smaller than vice-versa (easier to lose an edge than gain it).
- Prospect of transitioning to *H* has negligible impact on expected payoffs.

イロト 不得 トイヨト イヨト 二日

Formation of a relationship

Costly for P1 to enter a relationship with P2: fixed cost F. Prior about P1's type is formed conditional on observing entry.

- Let V^θ(π₀, σ) be the value to type θ of entering into the relationship under equilibrium σ when π₀ is the prior about their type.
- When F ∈ [V^L(1, σ), V^H(1, σ)], then the entry equilibrium involves only type H paying F to enter.

But, could assume otherwise; then L can sometimes enter, resulting in a prior $\pi_0 < 1$ at the start.

• L always mixes, so
$$V^{L}(\pi_{0}, \sigma) = F$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Add a costly signaling technology:

- Prior to P2's decision to hire, P1 can send a signal through a channel of fixed cost k (e.g., advertising, schmoozing...).
- No direct benefit.
- Both commitment type *H* and high-cost type *L* may choose to signal or not in each period.
 - i.e. *H* strategizes in signaling, but not in choosing their action.

< □ > < □ > < □ > < □ > < □ > < □ >

Timing

- **1** P1 chooses whether to send a signal, $s_t \in \{0, 1\}$, to P2 at cost k.
- P1 observes whether Nature chose to switch their type to L last period (if they were type H at the time).
- P2 observes if a signal was sent, and chooses to hire P1 or not, at cost w and benefit g to P1. If they fail to hire, the period ends; if they do hire, the following occurs:
 - **1** P1 is able to take an action $a_t \in \{0, 1\}$ at cost c_{θ} .
 - With probability pa_t, the action succeeds and a benefit b is generated for P2, which P2 observes. They do not observe a_t itself.
- If P1's type is H, with probability q Nature switches it to L (if so, it remains L forever).

3

< □ > < □ > < □ > < □ > < □ > < □ >

Related literature

- **Reputation with imperfect monitoring:** Fudenberg and Levine (1992), Board and Meyer-ter-Vehn (2013)
- Semi-persistent types: Horner, Takahashi, and Vielle (2015), Peski and Toikka (2017)
 - These papers study very patient players and don't model costly signals.
 - I differ by adding a signaling technology under a specific semi-persistent type process, while agnostic to δ.
- Costly signaling in reputation-building: Kaya (2009), Kartal (2018)
 - These authors discuss building a reputation with costly signaling under fixed types.

イロト イポト イヨト イヨト

Equilibrium and assumptions

I look for Markov-Perfect equilibria, where the state is P2's belief, π .

- Since P2s are short-lived, this is without loss for them
- Rules out P1 conditioning on own behavior in ways not directly relevant to P2's decision.
- Equilibrium is $\sigma = (s^H(\pi), s^L(\pi), x(\pi), a^H(\pi), a^L(\pi)).$

Payoff assumptions:

- Cooperation with type H is positive-surplus for P2: $pb \ge w$
- c_L is large enough that there is a unique no-signaling equilibrium in which the low type never takes an action.¹

¹A sufficient condition for uniqueness is that $c_L \ge \frac{a \log(\frac{w}{2pb})(2pb-w)}{w \log(1-q)^{2-1}}$, $z \to z = 0$ and $z \to z = 0$ and $z \to z = 0$.

Beliefs: action stage

Denote by π_t P2's belief at the start of period t, and by $\tilde{\pi}_t$ their belief following the signaling stage and P1 being informed of any changes to their type. Given that $a^H(\pi) = 1$ and $a^L(\pi) = 0$ for all π , we may relate $\tilde{\pi}_t$ to next-period beliefs π_{t+1} as follows:

Clearly,

$$\pi_{t+1}(\tilde{\pi}_t, x_t = 1, y_t = b) = 1.$$

Also,

$$\pi_{t+1}(\tilde{\pi}_t, x_t = 0, \cdot) = \tilde{\pi}_t,$$

 $\pi_{t+1}(\tilde{\pi}_t, x_t = 1, y_t = 0) = rac{(1-p)\tilde{\pi}_t}{(1-p)\tilde{\pi}_t + (1-\tilde{\pi}_t)}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beliefs: signaling stage

The probability of signaling as type *H* or *L*, respectively, are $s^{H}(\pi)$ and $s^{L}(\pi)$. Then, at the hiring stage, P2 updates their beliefs relative to the start of the period as follows:

$$egin{split} & ilde{\pi}_t(\pi_t,s_t=1)=(1-q)rac{s^H(\pi)\pi}{s^H(\pi)\pi+s^L(\pi)(1-\pi)}\ & ilde{\pi}_t(\pi_t,s_t=0)=(1-q)rac{(1-s^H(\pi))\pi}{(1-s^H(\pi))\pi+(1-s^L(\pi))(1-\pi)} \end{split}$$

Suppressing σ , denote by $V^{\theta}(\pi)$ and $\tilde{V}^{\theta}(\tilde{\pi})$ the expected future value of the relationship to P1 at the beginning of the period and at the hiring stage, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Play in the signaling stage

5 cases for play at the signaling stage:

- **()** Neither *H* nor *L* signal: $V^{\theta}(\pi) = \tilde{V}^{\theta}((1-q)\pi)$.
- **3** Type *H* always signals, type *L* never does: $V^{H}(\pi) = \tilde{V}^{H}(1-q) - k$ and $V^{L}(\pi) = \tilde{V}^{L}(0) = 0$.
- **3** Type *H* always signals, type *L* sometimes does: Exists *y* s.t. $V^{H}(\pi) = \tilde{V}^{H}(y) k$ and $V^{L}(\pi) = \tilde{V}^{L}(y) k = \tilde{V}^{L}(0) = 0$.
- Type *H* sometimes signals, type *L* does not: Exists *z* s.t. $V^{H}(\pi) = \tilde{V}^{H}(z) = \tilde{V}^{H}(1-q) - k$ and $V^{L}(\pi) = \tilde{V}^{L}(z)$.
- **3** Both types always signal: $V^{\theta}(\pi) = \tilde{V}^{\theta}((1-q)\pi) k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

P2's hiring problem

P2's decision is simple: their value of hiring P1 is $\tilde{\pi}_t pb - w$, so

$$w(ilde{\pi}) = egin{cases} 1 & ilde{\pi} > rac{w}{pb} \ lpha \in [0,1] & ilde{\pi} = rac{w}{pb} \ 0 & ilde{\pi} < rac{w}{pb} \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- 2

No-signaling benchmark

Suppose we shut down signaling. Then always $\tilde{\pi}_t = (1 - q)\pi_t$. The equilibrium σ^{ns} is characterized by:

• Belief is a function of # periods since last success (n):

•
$$\pi(n) = \frac{(1-q)^n (1-p)^{n-1}}{(1-q)^{n-1} (1-p)^{n-1} + q \sum_{i=0}^{n-2} (1-q)^i (1-p)^i}.$$

- There is a N = min{n : π(n) < w/pb} such that P2 stops hiring iff it has been at least N periods since the last observed success.
- In the long-run, cooperation always breaks down
- Positive probability of premature breakdown, i.e. breakdown while P1 is still type *H*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Preventing breakdowns

Can prevent cooperation from breaking down while P1 is still type H if we can separate L from H at some π at which

2 Type *H* always signals, type *L* never does: $V^{H}(\pi) = \tilde{V}^{H}(1) - k$ and $V^{L}(\pi) = \tilde{V}^{L}(0) = 0$.

Claim

Let σ_n^{sep} be a strategy profile in which P1 never signals for any $\pi > \pi(n)$, and only type H signals at $\pi(n)$ (and P2 best responds). The range of costs k such that $g \frac{1-\delta^{n+1}}{1-\delta} \le k \le V^H(1-q,\sigma_n^{sep})$ is nonempty, and given any such k, σ_n^{sep} is an equilibrium.

イロト 不得下 イヨト イヨト 二日

Efficiency comparison

Some signaling equilibria (weakly) improve outcomes for player of each type at each time period, and are strictly better for some player/type: Claim

A signaling equilibrium σ interim Pareto dominates the no-signaling equilibrium σ^{ns} if and only if for all n < N neither type of P1 signals at belief $\pi(n)$, and at $\pi(N)$ the high type sometimes signals.

A D F A B F A B F A B

Efficiency comparison

Sketch of proof (if): Compare outcomes on like paths.

- For each draw of Nature, there is τ such that cooperation would stop at time τ under the no-signaling equilibrium
 - Until τ , play in each period is identical between equilibria.
- If P1 is type H at τ, their continuation value is weakly positive under signaling equilibrium vs. 0 under no-signaling equilibrium; if type is L at τ, then it is 0 under both.
- P2s living after some histories after τ have positive expected utility under signaling equilibrium, due to the possibility of facing a P1 who has redeemed themselves. Under no signaling, their value is 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Sketch of proof (only if):

Let σ be a signaling equilibrium and $\hat{n} = \min\{n : s^H(\pi(n)) > 0\}$ be the smallest number of failures in a row such that some type of P1 signals at $\pi(\hat{n})$. Suppose that $\hat{n} < N$. One of 3 cases happens:

- Both types always signal at $\pi(\hat{n})$ then beliefs update as if neither type signals, with additional cost k at $\pi(n)$.
- s^H(π(n̂)) = 1 and s^L(π(n̂)) < 1 − then L must be indifferent between signaling and quitting, so V^L(π(n̂), σ) = 0; but V^L(π(n̂), σ^{ns}) ≥ g.
- $s^{H}(\pi(\hat{n})) \in (0,1)$ and $s^{L}(\pi(\hat{n})) = 0$ then with positive probability, $\tilde{\pi}(\hat{n}|\sigma) < \tilde{\pi}(\hat{n}|\sigma^{ns})$ and if so, P2 is worse off.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

Comparing k: Large k

• When $g \frac{1-\delta^{N+1}}{1-\delta} \leq k \leq V^H (1-q, \sigma_N^{sep})$, then σ_N^{sep} is an equilibrium that also Pareto dominates no signaling.

イロト 不得 トイヨト イヨト 二日

Comparing k: Small k

Now consider k < g. Excluding profiles in which both types wastefully signal, the unique signaling equilibrium is also Pareto-improving:

- When $\pi < \frac{w}{nb}$, type H always signals, and type L sometimes does, so that $\tilde{\pi} = \frac{w}{pb}$. Upon seeing a signal, P2 hires P1 with probability $\frac{k}{\sigma}$.
- Unique signaling equilibrium because L strictly prefers to signal if doing so results in even 1 extra period of trust from P2.

Other outcomes?

3 Type *H* always signals, type *L* sometimes does: Exists *y* s.t. $V^{H}(\pi) = \tilde{V}^{H}(y) - k$ and $V^{L}(\pi) = \tilde{V}^{L}(y) - k = \tilde{V}^{L}(0) = 0$.

イロト 不得下 イヨト イヨト 二日

Other outcomes?

- **3** Type *H* always signals, type *L* sometimes does: Exists *y* s.t. $V^{H}(\pi) = \tilde{V}^{H}(y) k$ and $V^{L}(\pi) = \tilde{V}^{L}(y) k = \tilde{V}^{L}(0) = 0$.
- Type *H* sometimes signals, type *L* does not: Exists *z* s.t. $V^{H}(\pi) = \tilde{V}^{H}(z) = \tilde{V}^{H}(1) - k$ and $V^{L}(\pi) = \tilde{V}^{L}(z)$.

イロト 不得 トイヨト イヨト 二日

Countability of cases 3, 4

When k > g and case 3 or 4 (either $s^{H}(\pi) \in (0, 1)$ or $s^{L}(\pi) \in (0, 1)$) happen on path, value of k is pinned down by the indifference condition and $\tilde{V}^{H}(y)$, $\tilde{V}^{L}(z)$.

- Values \$\tilde{V}^{H}(y)\$, \$\tilde{V}^{L}(z)\$ themselves depend on the sequence of cases of play in the signaling stages of future periods.
- But, only 5 cases \Rightarrow countable set of possible equations describing $\tilde{V}^{H}(y), \ \tilde{V}^{L}(z).$
- Therefore, countable number of k > g supporting signaling equilibria with case 3 or 4 on path.

Would not expect these cases to occur "in the wild" if Nature determines k from a continuum/with noise.

Equilibria as a function of k

э

(日) (四) (日) (日) (日)

Relationship to advertising?

Advertising "experience qualities" may be a positive signal of a product's value (Nelson '74, Schmalensee '78, Kihlstrom and Riordan '84).

- Could take this model to be a rational basis for consumers who respond positively to soft advertising.
 - P2 observes a public history of consumer experiences with product line.
 - Imperfect monitoring: element of chance in whether products meet consumer expectations.
 - Firms differ in whether they have an advantage in producing high-quality or low-quality products, and there is drift over time (management shifts, input prices, etc).
- Differs from cited models in focusing on a bilateral relationship and endogenizing consumer behavior (but ignores pricing, competition).

Directions to go

Plan to compare best possible ex-ante welfare under different signal levels.

• Could also consider whether it is optimal to change the cost of the anticipated signal as beliefs vary.

Could be an interesting model with 2 symmetric long-run players who mutually monitor and signal to each other.

 Models an equal partnership rather than a buyer/seller or client/agency relationship

Other thoughts:

- Would like to relax the discreteness of predictions, maybe with smoother types/signals.
- How would signaling would interact with choice to cooperate?