Intro	Model	Binary state	Finite data	> 2 states
000	00000	00000000	000000000000	000000

Inference from Selectively Disclosed Data

Ying Gao

November 23, 2021

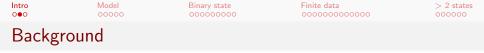
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Intro	Model	Binary state	Finite data	> 2 states
●00	00000	00000000		000000
Motivatio	n			

- Informed parties and decision-making bodies can be separate, with different interests
- Hard evidence is an important factor in generating a positive opinion, in order to win approval or buy-in
 - E.g. R&D teams and leadership, or companies and investors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Transparent motives to select data to support better conclusions, and selectively hide "bad" datapoints.
- Focus on problem of disclosing large datasets with many outcomes.



Full disclosure: In Grossman '81 and Milgrom '81, senders always disclose when known to hold a single piece of evidence.

Uncertain dataset: Dye '85 – partial disclosure with only sufficiently good news is shown. Shin '94, '03 – discrete set of good and bad signals of uncertain size. Partial disclosure follows a "sanitation strategy" where only good signals are disclosed.

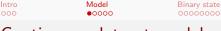
Dzuida '11: disclosure with uncertain mass of good and bad signals. Presence of honest types results in "partial sanitation" equilibria under a refinement that requires outcomes are a continuous function of the measure of good signals.

Imitation is an appealing equilibrium disclosure strategy, even when data has complicated distributions.

- Senders "imitate" a desirable state by disclosing a subset of their data that mimics the distribution of data under that state.
- Separately analyze binary-state case and case of > 2 states in which senders have a choice of which states to imitate.

Outcomes of imitation equilibria with binary state are **lexicographically optimal**: maximize the payoff to senders in order of highest potential payoffs in equilibrium.

- Extends, exists and is unique with finite datasets.
- Has a foundation from stability with respect to credible announcements.



Finite data

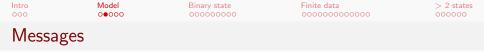
> 2 states

Continuous-dataset model

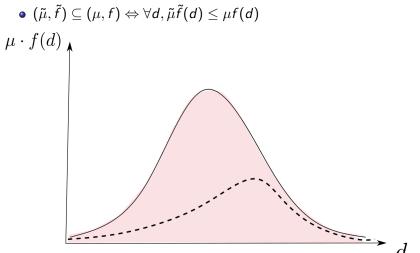
A sender (S) has payoffs that are increasing in a receiver's (R) beliefs about a state of the world, $\theta \in \Theta = \{1, \ldots, L\}$ with ex-ante distribution $\beta_0(\theta)$.

- Sender's type is (μ, θ) .
- μ , distributed with continuous density $g(\mu)$ on [0, 1], is the amount of data observed.
 - Assume that g(1) = 0.
- The distribution of the dataset has density f_{θ} perfectly reveals θ .
 - $f_{\theta}(d)$ differs from $f_{\theta'}(d)$ on a positive-measure set for all $\theta \neq \theta'$
 - Shared support $D \subset \mathbb{R}^n$ for all θ

Receiver sees neither f_{θ} nor μ : relies on prior to infer both the state and sender's information endowment.



Sender can show receiver any message $(\tilde{\mu}, \tilde{f}) \subseteq (\mu, f_{\theta})$.



ntro Model 000 00●00

Binary state

Finite data

> 2 states

Receiver and payoffs

Receiver is a Bayesian who forms a belief over types upon receiving a message, $\beta(\mu, \theta | \tilde{\mu}, \tilde{f})$. Marginal over states is $\beta(\theta | \tilde{\mu}, \tilde{f})$.

Assumption (payoff monotonicity)

S's preferences over R's marginal belief over states satisfies:

- For all point beliefs 1_θ and 1_{θ'} where θ' > θ, u_s(1_{θ'}) > u_s(1_θ).
- If u_s(β') > u_s(β), then u_s(αβ' + (1 − α)β) is continuous and increasing in α.

Satisfied if the receiver is an expected utility maximizer who takes a 1-dimensional action $a \in \mathbb{R}$, with

- $u_R(\theta, a)$ strictly concave
- arg max_a $u_R(\theta, a)$ strictly increasing in θ

and the sender's payoff $u_S(a)$ is increasing in a.

Finite data

Strategies and outcomes

Sender's strategy is $\sigma[\tilde{\mu}, \tilde{f} | \mu, \theta]$ and implies receiver draws inferences according to $\beta_{\sigma}(\theta | \tilde{\mu}, \tilde{f})$.

Restrict consideration to strategies in which:

- σ[μ̃, f̃|μ, θ] is a measurable function of μ for every μ̃, f̃, θ
 {μ : σ[μ̃, f̃|μ, θ] > 0} is convex
- **(**For simplicity) the support of $\sigma[\cdot|\mu, \theta]$ is finite.

An outcome of σ is

$$u_{\sigma}(\mu, heta) := \sum_{ ilde{\mu}, ilde{f} \in \mathsf{supp}(\sigma[\cdot|\mu, heta])} \sigma[ilde{\mu}, ilde{f}|\mu, heta] u_{s}\left(eta_{\sigma}(\cdot| ilde{\mu}, ilde{f})
ight).$$

シック 単則 スポッスポッス セッ

(2), convexity of sender set participating in a message, does not restrict the set of equilibrium outcomes.

- If (μ, θ) and (μ', θ) both send the same message in equilibrium, then they and all intermediate types obtain the same payoff.
- Can rearrange their messaging strategies so that types with greater μ send "more demanding" messages; then set of μ associated with each sent message is a point or interval.

Base equilibrium concept is PBE, $(\sigma^*, \beta_{\sigma^*})$ where β_{σ^*} is Bayesian update given σ^* and σ^* is a best response to the beliefs formed by β_{σ^*} .

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

In general there exist many PBE. 📼

Intro	Model	Binary state	Finite data	> 2 states
000	00000	●00000000	0000000000000	000000
Two st	tates			

Consider 2 states, $\Theta = \{H, L\}$.

• u_s is strictly increasing in $\beta(H|\cdot)$.

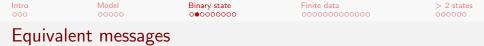
The sender with distribution f_{θ} 's ability to send distribution \tilde{f} is

$$r_{ heta}(ilde{f}) = \max\{ ilde{\mu}: (ilde{\mu}, ilde{f}) \subseteq (1, f_{ heta})\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In any equilibrium σ ,

- $u_{\sigma}(\mu, \theta)$ is weakly increasing in μ
- $u_{\sigma}(r_L(f_H)\mu, H) \leq u_{\sigma}(\mu, L)$
- $u_{\sigma}(r_L(f_H), H) = u_s(\mathbb{1}_H).$



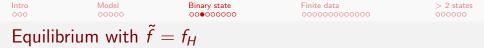
Continuous-mass datasets imply some redundancy, i.e. messages that prove the same thing.

- Let $d^* \in D^* := \arg \max_d \frac{f_H(d)}{f_L(d)}$.
- For any distribution \tilde{f} with $d^* \in \arg \max_d \frac{\tilde{f}(d)}{f_H(d)}$,

$$\left(\mu rac{f_{\mathcal{H}}(d^*)}{ ilde{f}(d^*)}, ilde{f}
ight) \subseteq (\mu, f_{ heta}) \Leftrightarrow (\mu, f_{\mathcal{H}}) \subseteq (\mu, f_{ heta}),$$

so the types capable of sending $\left(\mu \frac{f_H(d^*)}{\tilde{f}(d^*)}, \tilde{f}\right)$ and (μ, f_H) are the same.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで



Consider an imitation strategy $\bar{\sigma}$: (μ, θ) sends $(r_{\theta}(f_H)\mu, f_H)$.

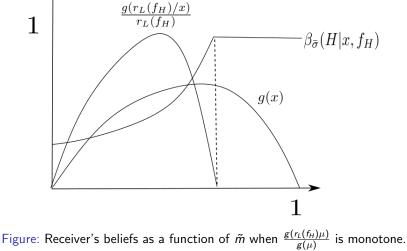
- i.e. types (μ, L) imitate f_H by hiding data, while (μ, H) is truthful.
- This gives an equilibrium when $\frac{g(r_L(f_H)\tilde{\mu})}{g(\tilde{\mu})}$ is (weakly) monotone increasing in $\tilde{\mu}$.

If outcomes from $\bar{\sigma}$ are nonmonotone, then iron to form σ^* :

• Take $\hat{\mu} = \sup\{\tilde{\mu} : \frac{g(r_L(f_H)\tilde{\mu})}{g(\tilde{\mu})}$ decreasing in $\tilde{\mu}\}$, and find $\tilde{\mu}' < \hat{\mu} < \tilde{\mu}''$ such that

$$\frac{\beta_{0} \cdot \int_{\mu'}^{\mu''} g\left(\tilde{\mu}\right) d\tilde{\mu}}{\beta_{0} \cdot \int_{\mu'}^{\mu''} g\left(\tilde{\mu}\right) d\tilde{\mu} + (1 - \beta_{0}) \int_{\mu'}^{\mu''} g\left(\frac{\tilde{\mu}}{r_{L}(f_{H})}\right) d\tilde{\mu}} = \beta_{\bar{\sigma}} \left(H|\tilde{\mu}', f_{H}\right) \\ = \beta_{\bar{\sigma}} (H|\tilde{\mu}'', f_{H}),$$
(1)

• Let (μ, θ) play $(\tilde{\mu}', f_H)$ for all $\mu \in [\frac{\tilde{\mu}'}{r_{\theta}(H)}, \frac{\tilde{\mu}''}{r_{\theta}(H)}]$, and repeat.



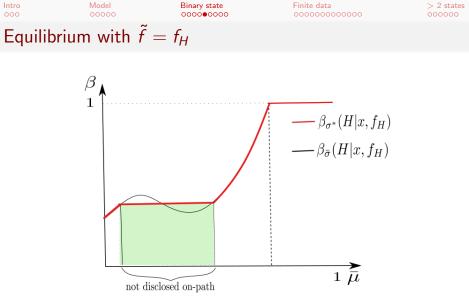


Figure: Ironed posteriors from a disclosure policy that satisfies IC for sender when $\frac{g(r_L(f_H)\mu)}{g(\mu)}$ is nonmonotone

An outcome $u_{\sigma}(\cdot)$ lexicographically dominates another outcome $u_{\sigma'}(\cdot)$ if there is v such that:

- $\forall u > v, \{(\mu', \theta') : u_{\sigma'}(\mu', \theta') \ge u\} \subseteq \{(\mu, \theta) : u_{\sigma}(\mu, \theta) \ge u\}$
- $\{(\mu',\theta'): u_{\sigma'}(\mu',\theta') \ge v\} \subset \{(\mu,\theta): u_{\sigma}(\mu,\theta) \ge v\}.$

i.e. there exists a set of highest-payoff types in σ' that do at least as well in $\sigma,$ and some do better.

Definition (lexicographic optimality)

A PBE outcome $u_{\sigma}(\cdot)$ is **lexicographically optimal** if it lexicographically dominates every other PBE outcome.

Finite data

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

An outcome $u_{\sigma}(\cdot)$ is lexicographically optimal in the disclosure problem with 2 states if at each μ ,

$$\sigma^{*} \in \arg\min_{\sigma \in \mathsf{PBE}(G)} \left(\frac{du_{\sigma}(\mu r_{\theta}(f_{H}), \theta)}{d\mu} \right)^{-}$$

$$s.t. \left\{ (\mu', \theta') : u_{\sigma}(\mu', \theta') > u_{\sigma^{*}}(\mu r_{\theta}(f_{H}), \theta) \right\}$$

$$= \left\{ (\mu', \theta') : u_{\sigma^{*}}(\mu', \theta') > u_{\sigma^{*}}(\mu r_{\theta}(f_{H}), \theta) \right\}$$
(2)

for each $\theta \in \{H, L\}$.

Binary state

Finite data

> 2 states

Lexicographic optimality

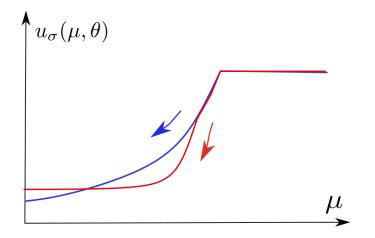


Figure: Two outcomes, as a function of μ for fixed θ . If blue has shallower derivative at rightmost point of divergence for all θ , then blue lexicographically dominates red.

000	00000	00000000	000000
Selection	of equilibriu	m outcome	

Proposition

Model

The imitation equilibrium outcome $u_{\sigma^*}(\cdot)$ is the unique lexicographically optimal equilibrium outcome when $|\Theta| = 2$.

Binary state

 In contrast, no equilibrium attains the maximum payoff for all senders simultaneously, or is Blackwell most informative.

Also selected by a regularity condition that having more data doesn't increase propensity to send an already-feasible dataset.

Lemma

 $u_{\sigma^*}(\cdot)$ is the unique outcome of equilibria in which, for all $\theta, \theta', \mu, \mu'$, and $(\tilde{\mu}, \tilde{f})$ such that $(\tilde{\mu}, \tilde{f}) \subseteq (\mu', f_{\theta'}) \subseteq (\mu, f_{\theta})$,

$$\frac{\beta(\mu', f_{\theta'}|\tilde{\mu}, \tilde{f})}{\beta(\mu, f_{\theta}|\tilde{\mu}, \tilde{f})} \ge \frac{\pi_0(f_{\theta'})g(\mu')r_{\theta}(\tilde{f})}{\pi_0(f_{\theta})g(\mu)r_{\theta'}(\tilde{f})}.$$
(3)

> 2 states

Continuous-data model is stylized approximation to large datasets

• Outcomes easy to characterize, but interpretation of messaging strategies is not direct

Explicitly modeling finite data provides a robustness check, and also provides a more direct interpretation of how messages must be used in lexicographically optimal equilibria.

• Allows lexicographically optimal equilibria to be constructed without reference to the equilibrium set, rather than characterized by process of elimination.

Drawback: equilibria are hard to describe, except (possibly) in the limit.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Intro	Model	Binary state	Finite data	> 2 states
000	00000		⊙●○○○○○○○○○○	000000

Finite-data model

Make the model finite by letting the amount of data received be $n \sim g(n)$, with g(n) supported on $\{1, \ldots, N\}$.

• Also assume finite $D = \{1, \ldots, k\}$ to be the domain of $f_{ heta}$.

Sender's type is $t = (n_1, \ldots, n_k) \in \mathcal{F}$, and the probability of each type is

$$q(t) = \frac{n!}{\prod_{x=1}^k n_x!} g(n) \sum_{\theta'} \beta_0(\theta') \prod_{x=1}^k f_{\theta'}(x)^{n_x}.$$

Sender does not know the state, but based on their data can evaluate the probability of state θ to be

$$\pi(\theta|t) = \frac{\beta_0(\theta) \prod_{x=1}^k f_\theta(x)^{n_x}}{\sum_{\theta'} \beta_0(\theta') \prod_{x=1}^k f_{\theta'}(x)^{n_x}}.$$

Partial strategies and partial updating

R's inference upon seeing \tilde{f} depends only on probabilities with which senders send it, not on the rest of the strategy.

Let T_σ(f̃) be the set of senders who play f̃ with positive probability

•
$$\hat{\sigma}_{\tilde{f}}(\tilde{f}|\cdot): T_{\sigma}(\tilde{f}) \to [0,1]$$
 is the restriction of σ to $T_{\sigma}(\tilde{f})$.
 $\beta_{\hat{\sigma}}(\theta|\tilde{f}) = \frac{\sum_{t \in T_{\sigma}(\tilde{f})} \pi(\theta|t)q(t)\hat{\sigma}_{\tilde{f}}(t)}{\sum_{t \in T_{\sigma}(\tilde{f})} q(t)\hat{\sigma}_{\tilde{f}}(t)}.$

Extend to sets of messages M, with $T_{\sigma}(M) = \bigcup_{\tilde{f} \in M} T_{\sigma}(\tilde{f})$ and $\hat{\sigma}_{M} : M \times T_{\sigma}(M) \to \mathbb{R}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a set of types \mathcal{T} , define

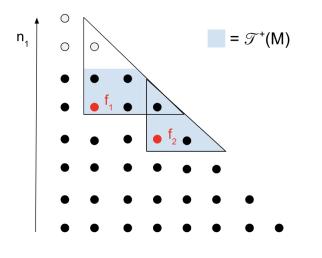
$$\mathcal{T}^+(ilde{f}) = \{t \in \mathcal{T}: ilde{f}_i \subset t\} \quad ext{and} \quad \mathcal{T}^+(M) = igcup_{ ilde{f} \in M} \mathcal{T}^+(ilde{f})$$

as the set of types in \mathcal{T} who can send \tilde{f} or any $\tilde{f} \in M$, respectively.

A set of messages $M = {\tilde{f}_1, \ldots, \tilde{f}_l}$ is a *unifying class* in \mathcal{T} if there is a partial strategy $\hat{\sigma}_M : M \times \mathcal{T}^+(M) \to \mathbb{R}$ with $\hat{\sigma}(\cdot|t) \in \Delta M$ under which equals:

- Each type in T⁺(M) plays messages in M with prob. 1, and M is exactly the set of messages played by types in T⁺(M)
- For any messages $\tilde{f}_i, \tilde{f}_j \in M$, payoffs are the same under $\beta_{\hat{\sigma}}$.

Intro	Model	Binary state	Finite data	> 2 states
000	00000		0000●00000000	000000
M and	$\mathcal{T}^+(M)$			



n₂

・・

Intro	Model	Binary state	Finite data	> 2 state
000	00000	00000000	00000000000	000000

An algorithm for lexicographic optimality

Define $u(\mathcal{T})$ to be the payoff to the receiver's posterior after learning the sender's type is in \mathcal{T} .

Construct a lexicographically optimal strategy profile as follows.

1 Let $\mathcal{T}_1 = \mathcal{F}$, and define $\mathcal{C}_{\mathcal{T}_1}$ to be the set of unifying classes in \mathcal{T}_1 . Take M_1 to be the union of messages in the elements of $\mathcal{C}_{\mathcal{T}_1}$ that yield the highest payoff to participating senders:

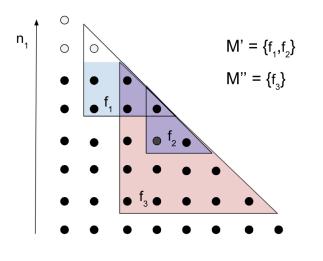
$$M_1 = \bigcup \{ \arg \max_{M \in \mathcal{C}_{\mathcal{T}_1}} u(\mathcal{T}_1^+(M)) \}.$$

Can show that M_1 is itself a payoff-maximizing unifying class of messages in T_1 , and thus the largest one.

Lemma

$$M_1 \in \operatorname{arg\,max}_{M \in \mathcal{C}_{\mathcal{T}_1}} u(\mathcal{T}_1^+(M)).$$

Unique largest payoff-maximizing unifying class



n₂

> 2 states

> 2 states 000000

An algorithm for lexicographic optimality

2 For m = 2 onwards, restrict the set of types to $\mathcal{T}_m = \mathcal{T}_{m-1} \setminus \mathcal{T}_{m-1}^+(M_{m-1})$, and create the class

$$M_m = \bigcup \{ \arg \max_{M \in \mathcal{C}_{\mathcal{T}_m}} u(\mathcal{T}_m^+(M)) \}.$$

3 Continue until $\mathcal{T}_m \setminus \mathcal{T}_m^+(M_m) = \emptyset$, and define σ^* by $\sigma^*(\tilde{f}|t) = \hat{\sigma}_{M_m}(\tilde{f})$ where M_m is the class containing \tilde{f} .

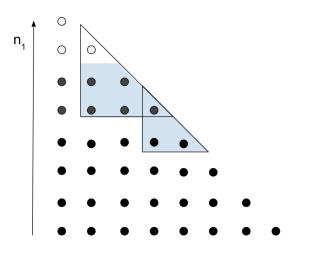
Proposition

 σ^* is an equilibrium.

This requires that $u(\mathcal{T}_m^+(M_m)) \ge u(\mathcal{T}_{m+1}^+(M_{m+1}))$ for all m.

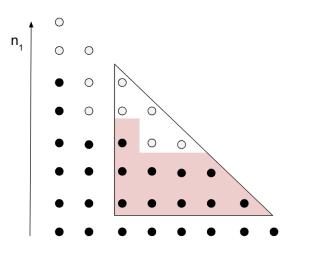
もうてい 正則 スポットポット 白マ

Intro 000	Model 00000	Binary state	Finite data 0000000●0000	> 2 states
Equilib	orium			



n₂

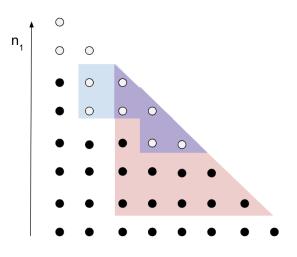
Intro	Model	Binary state	Finite data	> 2 states
000	00000		00000000●000	000000
Equilib	rium			



_▶▲콜▶ 콜⊫ ���?

n₂

Intro	Model	Binary state	Finite data	> 2 states
000	00000		000000000●00	000000
Equilib	rium			



▲ 필 ► · 필 ► · · · ○ < ○</p>

n₂

Intro	Model	Binary state	Finite data	> 2 states
000	00000	00000000	00000000000	000000

Inclusive announcements

Definition

Given an outcome u_{σ} , a set of types T has a **credible inclusive announcement** to play message set M for payoff v if

• There is partial strategy $\hat{\sigma}_M : M \times T \to \mathbb{R}$ such that $\forall \tilde{f} \in M$, $\sum_i \hat{\sigma}_{\tilde{f} \in M}(\tilde{f}|t) = 1$ for $t \in T$ and $u_s(\beta_{\hat{\sigma}_M}(\cdot|\tilde{f})) = v$.

•
$$\mathcal{T} = \{t: u_{\sigma}(t) \leq v \text{ and } \exists \tilde{f} \in M \text{ s.t. } \tilde{f} \subseteq t\}.$$

- There is some $t \in T$ with $u_{\sigma}(t) < v$.
- May involve reinterpreting messages already in play in σ .
- Related to credible announcements (Matthews et al '91), but differs in requiring participation of *all* weakly better-off types.

Claim

An outcome u_{σ} is lexicographically optimal if and only if no set of types has a credible inclusive announcement under it.

Intro 000	Model	Binary state	Finite data 0000000000●	> 2 states 000000
Properties	s of <i>u</i> _*			

Proposition

 u_{σ^*} is the lexicographically optimal equilibrium outcome.

Hard to solve for u_{σ^*} in general, but feasible when restricting to 2 states, $\Theta = \{L, H\}$ and 2 outcomes, $X = \{I, h\}$, with p(h|H) > p(h|L).

- Optimal strategy is to hide all Is, and disclose a subset of hs.
- Sps. a sequence of finite data-generating functions limits to the continuous dataset-generating function g(μ) as N → ∞.

Then the limit of outcomes $u_{\sigma_N^*}$ under these models limits to the imitation equilibrium outcome under continuous datasets.

Conjecture: With > 2 signal realizations, u_{σ^*} also limits to the imitation equilibrium outcome.

Return to continuously-distributed datasets to characterize outcomes when $|\Theta| = J > 2$.

• In an imitation equilibrium, on-path strategies are

 $\{(\tilde{\mu}, f_{\theta})\}_{\mu \in [\underline{\mu}, \bar{\mu}], \theta \in \Theta}.$

- $u_s(\beta(\cdot|\tilde{\mu}, f_{\theta}))$ is (weakly) increasing in $\tilde{\mu}$ for each $\theta \in \{1, \ldots, J\}$.*
- Optimization by sender implies (μ, θ) should choose to imitate state

$$\widetilde{ heta} \in rg\max_{\widetilde{ heta'}} u_s(eta_\sigma(\cdot|r_ heta(f_{\widetilde{ heta'}})\mu,f_ heta))$$

^{*}At least on path; off-path beliefs can always be made to satisfy weak monotonicity in $\tilde{\mu}$.

Intro	Model	Binary state	Finite data	> 2 states
000	00000		000000000000	000000
Burder	n of proof			

- Can summarize with a vector-valued burden-of-proof function, $\hat{\mu}(u) = (\hat{\mu}_1(u), \dots, \hat{\mu}_J(u)).$
 - $\hat{\mu}_j(u)$ is the amount of data distributed f_j necessary to achieve payoff u.
 - Each sender need only meet a component of $\hat{\mu}(u)$ in order to obtain u, so

$$u_{\sigma}(\mu, \theta) = \max\{u : \exists j \text{ s.t. } (\hat{\mu}_j(u), j) \subseteq (\mu, \theta)\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intro	Model	Binary state	Finite data	> 2 states
000	00000		000000000000	000000
Rurder	of proof			

Theorem

 \exists a unique vector-valued function $\hat{\mu}(u) : [0, u_s(\mathbb{1}_{\theta=1})] \to \mathbb{R}^J \text{ s.t.}$

- $u_j(\tilde{\mu})$ is continuous and (weakly) increasing in $\tilde{\mu}$ for all j.
- 2 There is a strategy σ^{Im} with $\sigma^{Im}(\mu, f_{\theta})$ supported on

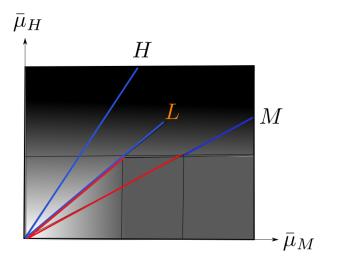
$$ilde{\mathcal{S}}_{ heta}(\mu) = \{(\hat{\mu}_j(u), f_j): j \in rg\max_j u_j(\mu r_{ heta}(f_j))\}$$

with $\sigma^{Im}[\hat{\mu}_j(u), f_j | \hat{\mu}_j(u), j] = 1$ for all j such that $u_s(\mathbb{1}_j) \ge u$ and such that for each u and j,

$$u_{\sigma^{Im}}(\hat{\mu}_k(u), f_k) = u.$$

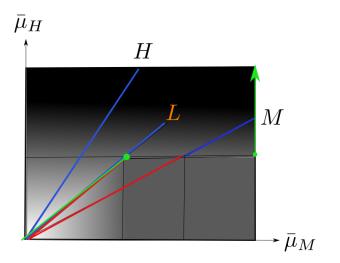
 σ^{lm} is an equilibrium sender strategy profile, and $\hat{\mu}(\cdot)$ is the corresponding burden-of-proof function.

Intro	Model	Binary state	Finite data	> 2 states
000	00000		000000000000	000000
Equilib	orium			



◆□ ▶ < @ ▶ < E ▶ < E ▶ E ■ 9 Q @</p>

Intro 000	Model 00000	Binary state	Finite data	> 2 states 000000
Equilib	prium			



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intro 000	Model 00000	Binary state	Finite data	> 2 states 000000
Comme	nts			

- $\hat{\mu}$ and $\sigma^{\textit{Im}}$ can be constructed iteratively. A summary:
 - Payoffs $u \in [u_s(\mathbb{1}_{j-1}), u_s(\mathbb{1}_j)]$ require imitating a state in $\{j, \ldots, J\}$.
 - Initial condition $\hat{\mu}_J(\mathbb{1}_J) = \max_{j < J} \{r_j(f_J)\}.$
 - Rate of change of $u_k(\tilde{\mu})$ pinned by change in ratios of $g(\frac{\tilde{\mu}}{r_{\theta}(f_k)})$; rate of change of $\sigma^{Im}(r_{\theta}(f_j)\mu, f_j|\mu, \theta)$ in μ for mixing types is pinned by indifference.
- If (μ, θ) hides data under σ^{lm}, then it obtains payoff strictly greater than u_s(1_θ); if not, then it does not.

Conjecture: $u_{\sigma^{Im}}$ is lexicographically optimal. **Conjecture 2**: $u_{\sigma^{Im}}$ is the limit of finite-data equilibria with > 2 states and data mass distributions limiting to $g(\mu)$.

PBE (binary state)

PBE is $(\sigma^*, \beta_{\sigma^*})$ where

• supp $\sigma^*[\cdot|\mu, \theta] \subseteq \arg \max_{\tilde{\mu}, \tilde{f}} u_s(\beta_{\sigma^*}(\cdot|\tilde{\mu}, \tilde{f}))$ s.t. $(\tilde{\mu}, \tilde{f}) \subset (\mu, f_{\theta})$.

•
$$\beta_{\sigma^*}(\theta|\tilde{\mu}, \tilde{f}) = \frac{\beta_0(\theta) \int_{\mu} g(\mu) \sigma^*(\tilde{\mu}, \tilde{f}|\mu, \theta) d\mu}{\sum_{\theta' \in \Theta} \beta_0(\theta') \int_{\mu} g(\mu) \sigma^*(\tilde{\mu}, \tilde{f}|\mu, \theta') d\mu}$$

PBE with bad off-path beliefs:

There exists a PBE in which types (µ ≥ r_L(f_H), H) are honest, while all types under state L and types (µ < r_L(f_H), H) all disclose nothing.

PBE with bad on-path beliefs:

- If β(θ|μ̃, H̃) is the same for all μ̃ ∈ [μ̃', μ̃"], then some senders under state H that are capable of sending e.g. (μ̃", H) may instead send (μ̃, H) for some μ̃ < μ̃".
- Some mixed strategy of this form in turn supports a uniform belief on $[\tilde{\mu}', \tilde{\mu}'']$.

Message classes

A set of messages $M = {\tilde{f}_1, \ldots, \tilde{f}_l}$ is a *unifying class* in \mathcal{T} if there is a partial strategy $\hat{\sigma}_M : M \times \mathcal{T}^+(M) \to \mathbb{R}$ with $\hat{\sigma}(\cdot|t) \in \Delta M$ under which:

A.
$$\sum_{i} \hat{\sigma}_{M}(\tilde{f}_{i}|t) = 1$$
 for all $t \in \mathcal{T}^{+}(M)$.
B. For each \tilde{f}_{i} , there is $T_{\hat{\sigma}_{M}}(\tilde{f}_{i})$ such that $\hat{\sigma}_{M}(\tilde{f}_{i}|t) = 0$ for $t \notin T_{\hat{\sigma}_{M}}(\tilde{f}_{i})$, and $\mathcal{T}^{+}(M) = \bigcup_{i} T_{\hat{\sigma}_{M}}(\tilde{f}_{i})$.
C. $u_{s}(\beta_{\hat{\sigma}_{M}}(\cdot|\tilde{f}_{i})) = u_{s}(\beta_{\hat{\sigma}_{M}}(\cdot|\tilde{f}_{i}))$ for all i, j .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

A weakly credible announcement is $\langle (\tilde{\mu}, \tilde{f}), (\tau, T) \rangle$ such that:

- For all types (μ, θ) in T, and all messages $(\tilde{\mu}, \tilde{f})$ in the support of $\tau(\cdot | \mu, \theta)$,
 - u_s[(μ̃, f̃), (τ, T)|μ, θ] ≥ u_s[σ|μ, θ], with strict inequality for some (μ, θ) ∈ D.
 - ② $u_s[(\tilde{\mu}, \tilde{f}), (\tau, T)|\mu, \theta] \ge u_s[(\tilde{\mu}', \tilde{f}'), (\tau, T)|\mu, \theta]$ for any $\tilde{\mu}', \tilde{f}'$ played with positive probability under τ .
- Prove the set of the set of

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・