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Motivation

Informed parties and decision-making bodies can be separate,
with different interests

Hard evidence is an important factor in generating a positive
opinion, in order to win approval or buy-in

E.g. R&D teams and leadership, or companies and investors.

Transparent motives to select data to support better
conclusions, and selectively hide “bad” datapoints.

Focus on problem of disclosing large datasets with many
outcomes.
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Background

Full disclosure: In Grossman ’81 and Milgrom ’81, senders always
disclose when known to hold a single piece of evidence.

Uncertain dataset: Dye ’85 – partial disclosure with only
sufficiently good news is shown.
Shin ’94, ’03 – discrete set of good and bad signals of uncertain
size. Partial disclosure follows a “sanitation strategy” where only
good signals are disclosed.

Dzuida ’11: disclosure with uncertain mass of good and bad
signals. Presence of honest types results in “partial sanitation”
equilibria under a refinement that requires outcomes are a
continuous function of the measure of good signals.
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Main points

Imitation is an appealing equilibrium disclosure strategy, even
when data has complicated distributions.

Senders “imitate” a desirable state by disclosing a subset of
their data that mimics the distribution of data under that
state.

Separately analyze binary-state case and case of > 2 states in
which senders have a choice of which states to imitate.

Outcomes of imitation equilibria with binary state are
lexicographically optimal: maximize the payoff to senders in
order of highest potential payoffs in equilibrium.

Extends, exists and is unique with finite datasets.

Has a foundation from stability with respect to credible
announcements.
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Continuous-dataset model

A sender (S) has payoffs that are increasing in a receiver’s (R)
beliefs about a state of the world, θ ∈ Θ = {1, . . . , L} with ex-ante
distribution β0(θ).

Sender’s type is (µ, θ).

µ, distributed with continuous density g(µ) on [0, 1], is the
amount of data observed.

Assume that g(1) = 0.

The distribution of the dataset has density fθ – perfectly
reveals θ.

fθ(d) differs from fθ′(d) on a positive-measure set for all θ 6= θ′

Shared support D ⊂ Rn for all θ

Receiver sees neither fθ nor µ: relies on prior to infer both the
state and sender’s information endowment.
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Messages

Sender can show receiver any message (µ̃, f̃ ) ⊆ (µ, fθ).

(µ̃, f̃ ) ⊆ (µ, f )⇔ ∀d , µ̃f̃ (d) ≤ µf (d)
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Receiver and payoffs

Receiver is a Bayesian who forms a belief over types upon receiving
a message, β(µ, θ|µ̃, f̃ ). Marginal over states is β(θ|µ̃, f̃ ).

Assumption (payoff monotonicity)

S’s preferences over R’s marginal belief over states satisfies:

For all point beliefs 1θ and 1θ′ where θ′ > θ,
us(1θ′) > us(1θ).

If us(β′) > us(β), then us(αβ′ + (1− α)β) is continuous and
increasing in α.

Satisfied if the receiver is an expected utility maximizer who takes
a 1-dimensional action a ∈ R, with

uR(θ, a) strictly concave

arg maxa uR(θ, a) strictly increasing in θ

and the sender’s payoff uS(a) is increasing in a.
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Strategies and outcomes

Sender’s strategy is σ[µ̃, f̃ |µ, θ] and implies receiver draws
inferences according to βσ(θ|µ̃, f̃ ).

Restrict consideration to strategies in which:

1 σ[µ̃, f̃ |µ, θ] is a measurable function of µ for every µ̃, f̃ , θ

2 {µ : σ[µ̃, f̃ |µ, θ] > 0} is convex

3 (For simplicity) the support of σ[·|µ, θ] is finite.

An outcome of σ is

uσ(µ, θ) :=
∑

µ̃,f̃ ∈supp(σ[·|µ,θ])

σ[µ̃, f̃ |µ, θ]us
(
βσ(·|µ̃, f̃ )

)
.
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Equilibrium

(2), convexity of sender set participating in a message, does not
restrict the set of equilibrium outcomes.

If (µ, θ) and (µ′, θ) both send the same message in
equilibrium, then they and all intermediate types obtain the
same payoff.

Can rearrange their messaging strategies so that types with
greater µ send “more demanding” messages; then set of µ
associated with each sent message is a point or interval.

Base equilibrium concept is PBE, (σ∗, βσ∗) where βσ∗ is Bayesian
update given σ∗ and σ∗ is a best response to the beliefs formed by
βσ∗ .

In general there exist many PBE. ex



Intro Model Binary state Finite data > 2 states

Two states

Consider 2 states, Θ = {H, L}.
us is strictly increasing in β(H|·).

The sender with distribution fθ’s ability to send distribution f̃ is

rθ(f̃ ) = max{µ̃ : (µ̃, f̃ ) ⊆ (1, fθ)}.

In any equilibrium σ,

uσ(µ, θ) is weakly increasing in µ

uσ(rL(fH)µ,H) ≤ uσ(µ, L)

uσ(rL(fH),H) = us(1H).
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Equivalent messages

Continuous-mass datasets imply some redundancy, i.e. messages
that prove the same thing.

Let d∗ ∈ D∗ := arg maxd
fH(d)
fL(d) .

For any distribution f̃ with d∗ ∈ arg maxd
f̃ (d)
fH(d) ,(

µ
fH(d∗)

f̃ (d∗)
, f̃

)
⊆ (µ, fθ)⇔ (µ, fH) ⊆ (µ, fθ),

so the types capable of sending
(
µ fH(d∗)

f̃ (d∗)
, f̃
)

and (µ, fH) are

the same.



Intro Model Binary state Finite data > 2 states

Equilibrium with f̃ = fH

Consider an imitation strategy σ̄: (µ, θ) sends (rθ(fH)µ, fH).

i.e. types (µ, L) imitate fH by hiding data, while (µ,H) is
truthful.
This gives an equilibrium when g(rL(fH)µ̃)

g(µ̃) is (weakly)
monotone increasing in µ̃.

If outcomes from σ̄ are nonmonotone, then iron to form σ∗:

Take µ̂ = sup{µ̃ : g(rL(fH)µ̃)
g(µ̃) decreasing in µ̃}, and find

µ̃′ < µ̂ < µ̃′′ such that

β0 ·
∫ µ′′
µ′ g (µ̃) d µ̃

β0 ·
∫ µ′′
µ′ g (µ̃) d µ̃+ (1− β0)

∫ µ′′
µ′ g

(
µ̃

rL(fH)

)
d µ̃

= βσ̄
(
H|µ̃′, fH

)
= βσ̄(H|µ̃′′, fH),

(1)

Let (µ, θ) play (µ̃′, fH) for all µ ∈ [ µ̃′

rθ(H) ,
µ̃′′

rθ(H) ], and repeat.
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Equilibrium with f̃ = fH

Figure: Receiver’s beliefs as a function of m̃ when g(rL(fH )µ)
g(µ) is monotone.
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Equilibrium with f̃ = fH

Figure: Ironed posteriors from a disclosure policy that satisfies IC for

sender when g(rL(fH )µ)
g(µ) is nonmonotone
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Lexicographic optimality

An outcome uσ(·) lexicographically dominates another outcome
uσ′(·) if there is v such that:

∀u > v , {(µ′, θ′) : uσ′(µ
′, θ′) ≥ u} ⊆ {(µ, θ) : uσ(µ, θ) ≥ u}

{(µ′, θ′) : uσ′(µ
′, θ′) ≥ v} ⊂ {(µ, θ) : uσ(µ, θ) ≥ v}.

i.e. there exists a set of highest-payoff types in σ′ that do at least
as well in σ, and some do better.

Definition (lexicographic optimality)

A PBE outcome uσ(·) is lexicographically optimal if it
lexicographically dominates every other PBE outcome.
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Lexicographic optimality

An outcome uσ(·) is lexicographically optimal in the disclosure
problem with 2 states if at each µ,

σ∗ ∈ arg min
σ∈PBE(G)

(
duσ(µrθ(fH), θ)

dµ

)−
s.t. {(µ′, θ′) : uσ(µ′, θ′) > uσ∗(µrθ(fH), θ)}

= {(µ′, θ′) : uσ∗(µ
′, θ′) > uσ∗(µrθ(fH), θ)}

(2)

for each θ ∈ {H, L}.
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Lexicographic optimality

Figure: Two outcomes, as a function of µ for fixed θ.
If blue has shallower derivative at rightmost point of divergence for all θ,
then blue lexicographically dominates red.
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Selection of equilibrium outcome

Proposition

The imitation equilibrium outcome uσ∗(·) is the unique
lexicographically optimal equilibrium outcome when |Θ| = 2.

In contrast, no equilibrium attains the maximum payoff for all
senders simultaneously, or is Blackwell most informative.

Also selected by a regularity condition that having more data
doesn’t increase propensity to send an already-feasible dataset.

Lemma

uσ∗(·) is the unique outcome of equilibria in which, for all
θ, θ′, µ, µ′, and (µ̃, f̃ ) such that (µ̃, f̃ ) ⊆ (µ′, fθ′) ⊆ (µ, fθ),

β(µ′, fθ′ |µ̃, f̃ )

β(µ, fθ|µ̃, f̃ )
≥ π0(fθ′)g(µ′)rθ(f̃ )

π0(fθ)g(µ)rθ′(f̃ )
. (3)
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Finite data

Continuous-data model is stylized approximation to large datasets

Outcomes easy to characterize, but interpretation of
messaging strategies is not direct

Explicitly modeling finite data provides a robustness check, and
also provides a more direct interpretation of how messages must be
used in lexicographically optimal equilibria.

Allows lexicographically optimal equilibria to be constructed
without reference to the equilibrium set, rather than
characterized by process of elimination.

Drawback: equilibria are hard to describe, except (possibly) in the
limit.
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Finite-data model

Make the model finite by letting the amount of data received be
n ∼ g(n), with g(n) supported on {1, . . . ,N}.

Also assume finite D = {1, . . . , k} to be the domain of fθ.

Sender’s type is t = (n1, . . . , nk) ∈ F , and the probability of each
type is

q(t) =
n!

Πk
x=1nx !

g(n)
∑
θ′

β0(θ′)Πk
x=1fθ′(x)nx .

Sender does not know the state, but based on their data can
evaluate the probability of state θ to be

π(θ|t) =
β0(θ)Πk

x=1fθ(x)nx∑
θ′ β0(θ′)Πk

x=1fθ′(x)nx
.
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Partial strategies and partial updating

R’s inference upon seeing f̃ depends only on probabilities with
which senders send it, not on the rest of the strategy.

Let Tσ(f̃ ) be the set of senders who play f̃ with positive
probability

σ̂f̃ (f̃ |·) : Tσ(f̃ )→ [0, 1] is the restriction of σ to Tσ(f̃ ).

βσ̂(θ|f̃ ) =

∑
t∈Tσ(f̃ ) π(θ|t)q(t)σ̂f̃ (t)∑

t∈Tσ(f̃ ) q(t)σ̂f̃ (t)
.

Extend to sets of messages M, with Tσ(M) =
⋃

f̃ ∈M Tσ(f̃ ) and
σ̂M : M × Tσ(M)→ R.
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Message classes

Given a set of types T , define

T +(f̃ ) = {t ∈ T : f̃i ⊂ t} and T +(M) =
⋃
f̃ ∈M

T +(f̃ )

as the set of types in T who can send f̃ or any f̃ ∈ M,
respectively.

A set of messages M = {f̃1, . . . , f̃I} is a unifying class in T if there
is a partial strategy σ̂M : M × T +(M)→ R with σ̂(·|t) ∈ ∆M
under which eqns :

Each type in T +(M) plays messages in M with prob. 1, and
M is exactly the set of messages played by types in T +(M)

For any messages f̃i , f̃j ∈ M, payoffs are the same under βσ̂.
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M and T +(M)
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An algorithm for lexicographic optimality

Define u(T ) to be the payoff to the receiver’s posterior after
learning the sender’s type is in T .

Construct a lexicographically optimal strategy profile as follows.

1 Let T1 = F , and define CT1 to be the set of unifying classes in
T1. Take M1 to be the union of messages in the elements of
CT1 that yield the highest payoff to participating senders:

M1 =
⋃
{arg max

M∈CT1

u(T +
1 (M))}.

Can show that M1 is itself a payoff-maximizing unifying class of
messages in T1, and thus the largest one.

Lemma

M1 ∈ arg maxM∈CT1
u(T +

1 (M)).
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Unique largest payoff-maximizing unifying class
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An algorithm for lexicographic optimality

2 For m = 2 onwards, restrict the set of types to
Tm = Tm−1 \ T +

m−1(Mm−1), and create the class

Mm =
⋃
{arg max

M∈CTm
u(T +

m (M))}.

3 Continue until Tm \ T +
m (Mm) = ∅, and define σ∗ by

σ∗(f̃ |t) = σ̂Mm(f̃ ) where Mm is the class containing f̃ .

Proposition

σ∗ is an equilibrium.

This requires that u(T +
m (Mm)) ≥ u(T +

m+1(Mm+1)) for all m.
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Equilibrium
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Equilibrium
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Equilibrium
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Inclusive announcements

Definition

Given an outcome uσ, a set of types T has a credible inclusive
announcement to play message set M for payoff v if

There is partial strategy σ̂M : M × T → R such that ∀f̃ ∈ M,∑
i σ̂f̃ ∈M(f̃ |t) = 1 for t ∈ T and us(βσ̂M (·|f̃ )) = v .

T = {t : uσ(t) ≤ v and ∃f̃ ∈ M s.t. f̃ ⊆ t}.
There is some t ∈ T with uσ(t) < v .

May involve reinterpreting messages already in play in σ.

Related to credible announcements (Matthews et al ’91), but
differs in requiring participation of all weakly better-off types.

Claim

An outcome uσ is lexicographically optimal if and only if no set of
types has a credible inclusive announcement under it.
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Properties of uσ∗

Proposition

uσ∗ is the lexicographically optimal equilibrium outcome.

Hard to solve for uσ∗ in general, but feasible when restricting to 2
states, Θ = {L,H} and 2 outcomes, X = {l , h}, with
p(h|H) > p(h|L).

Optimal strategy is to hide all ls, and disclose a subset of hs.

Sps. a sequence of finite data-generating functions limits to
the continuous dataset-generating function g(µ) as N →∞.

Then the limit of outcomes uσ∗N under these models limits to
the imitation equilibrium outcome under continuous datasets.

Conjecture: With > 2 signal realizations, uσ∗ also limits to the
imitation equilibrium outcome.
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> 2 states

Return to continuously-distributed datasets to characterize
outcomes when |Θ| = J > 2.

In an imitation equilibrium, on-path strategies are

{(µ̃, fθ)}µ∈[µ,µ̄],θ∈Θ.

us(β(·|µ̃, fθ)) is (weakly) increasing in µ̃ for each
θ ∈ {1, . . . , J}.∗

Optimization by sender implies (µ, θ) should choose to imitate
state

θ̃ ∈ arg max
θ̃′

us(βσ(·|rθ(fθ̃′)µ, fθ))

∗At least on path; off-path beliefs can always be made to satisfy weak
monotonicity in µ̃.
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Burden of proof

Can summarize with a vector-valued burden-of-proof function,
µ̂(u) = (µ̂1(u), . . . , µ̂J(u)).

µ̂j(u) is the amount of data distributed fj necessary to achieve
payoff u.
Each sender need only meet a component of µ̂(u) in order to
obtain u, so

uσ(µ, θ) = max{u : ∃j s.t. (µ̂j(u), j) ⊆ (µ, θ)}

µ̂j(u) has domain [us(11), us(1j)] and inverse uj(µ̃) that gives
the payoff to message (µ̃, fj).
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Burden of proof

Theorem

∃ a unique vector-valued function µ̂(u) : [0, us(1θ=1)]→ RJ s.t.

1 uj(µ̃) is continuous and (weakly) increasing in µ̃ for all j .

2 There is a strategy σIm with σIm(µ, fθ) supported on

S̃θ(µ) = {(µ̂j(u), fj) : j ∈ arg max
j

uj(µrθ(fj))}

with σIm[µ̂j(u), fj |µ̂j(u), j ] = 1 for all j such that us(1j) ≥ u
and such that for each u and j ,

uσIm (µ̂k(u), fk) = u.

σIm is an equilibrium sender strategy profile, and µ̂(·) is the
corresponding burden-of-proof function.
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Equilibrium
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Equilibrium
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Comments

µ̂ and σIm can be constructed iteratively. A summary:

Payoffs u ∈ [us(1j−1), us(1j)] require imitating a state in
{j , . . . , J}.
Initial condition µ̂J(1J) = maxj<J{rj(fJ)}.
Rate of change of uk(µ̃) pinned by change in ratios of
g( µ̃

rθ(fk ) ); rate of change of σIm(rθ(fj)µ, fj |µ, θ) in µ for mixing

types is pinned by indifference.

If (µ, θ) hides data under σIm, then it obtains payoff strictly
greater than us(1θ); if not, then it does not.

Conjecture: uσIm is lexicographically optimal.
Conjecture 2: uσIm is the limit of finite-data equilibria with > 2
states and data mass distributions limiting to g(µ).



PBE (binary state)

PBE is (σ∗, βσ∗) where

supp σ∗[·|µ, θ] ⊆ arg maxµ̃,f̃ us(βσ∗(·|µ̃, f̃ )) s.t. (µ̃, f̃ ) ⊂
(µ, fθ).

βσ∗(θ|µ̃, f̃ ) =
β0(θ)

∫
µ g(µ)σ∗(µ̃,f̃ |µ,θ)dµ∑

θ′∈Θ β0(θ′)
∫
µ g(µ)σ∗(µ̃,f̃ |µ,θ′)dµ

PBE with bad off-path beliefs:

There exists a PBE in which types (µ ≥ rL(fH),H) are honest,
while all types under state L and types (µ < rL(fH),H) all
disclose nothing.

PBE with bad on-path beliefs:

If β(θ|µ̃, H̃) is the same for all µ̃ ∈ [µ̃′, µ̃′′], then some senders
under state H that are capable of sending e.g. (µ̃′′,H) may
instead send (µ̃,H) for some µ̃ < µ̃′′.

Some mixed strategy of this form in turn supports a uniform
belief on [µ̃′, µ̃′′].



Message classes

A set of messages M = {f̃1, . . . , f̃I} is a unifying class in T if there
is a partial strategy σ̂M : M × T +(M)→ R with σ̂(·|t) ∈ ∆M
under which:

A.
∑

i σ̂M(f̃i |t) = 1 for all t ∈ T +(M).

B. For each f̃i , there is Tσ̂M (f̃i ) such that σ̂M(f̃i |t) = 0 for
t 6∈ Tσ̂M (f̃i ), and T +(M) =

⋃
i Tσ̂M (f̃i ).

C. us(βσ̂M (·|f̃i )) = us(βσ̂M (·|f̃j)) for all i , j .



Credible announcements

A weakly credible announcement is 〈(µ̃, f̃ ), (τ,T )〉 such that:

1 For all types (µ, θ) in T , and all messages (µ̃, f̃ ) in the
support of τ(·|µ, θ),

1 us [(µ̃, f̃ ), (τ,T )|µ, θ] ≥ us [σ|µ, θ], with strict inequality for
some (µ, θ) ∈ D.

2 us [(µ̃, f̃ ), (τ,T )|µ, θ] ≥ us [(µ̃′, f̃ ′), (τ,T )|µ, θ] for any µ̃′, f̃ ′

played with positive probability under τ .

2 For all types (µ, θ) not in T , and all messages (µ̃, f̃ )
announced with positive probability under τ ,
us [(µ̃, f̃ ), (τ,T )|µ, θ] ≤ us [σ|µ, θ].
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